Pessimism of the Intellect, Optimism of the Will Favorite posts | Manifold podcast | Twitter: @hsu_steve
Thursday, April 13, 2023
Katherine Dee: Culture, Identity, and Isolation in the Digital Age — Manifold #33
Thursday, January 19, 2023
Dominic Cummings: Vote Leave, Brexit, COVID, and No. 10 with Boris — Manifold #28
Thursday, December 15, 2022
Geoffrey Miller: Evolutionary Psychology, Polyamorous Relationships, and Effective Altruism — Manifold #26
Thursday, October 20, 2022
Discovering the Multiverse: Quantum Mechanics and Hugh Everett III, with Peter Byrne — Manifold #22
Wednesday, September 28, 2022
The Future of Human Evolution -- excerpts from podcast interview with Brian Chau
The transcript excerpts below are from my recent conversation with Brian Chau (aka Cactus Chu) on his podcast.
— steve hsu (@hsu_steve) September 28, 2022
Segments begin at 47m and 1h07m.
They have been lightly edited.https://t.co/RJ68FasfJchttps://t.co/TnSuNaxhnQ
Monday, September 05, 2022
Lunar Society (Dwarkesh Patel) Interview
Wednesday, January 26, 2022
ManifoldOne podcast
Please visit Manifold1.com
First episode is up!
James Lee on Polygenic Prediction and Embryo SelectionFriday, December 31, 2021
Happy New Year 2022!
Sunday, November 14, 2021
Has Hawking's Black Hole Information Paradox Been Resolved?
Do Black Holes Destroy Information?
https://arxiv.org/abs/hep-th/9209058
John Preskill
I review the information loss paradox that was first formulated by Hawking, and discuss possible ways of resolving it. All proposed solutions have serious drawbacks. I conclude that the information loss paradox may well presage a revolution in fundamental physics.
Lessons from the Information Paradox
https://arxiv.org/abs/2012.05770
Suvrat Raju
Abstract: We review recent progress on the information paradox. We explain why exponentially small correlations in the radiation emitted by a black hole are sufficient to resolve the original paradox put forward by Hawking. We then describe a refinement of the paradox that makes essential reference to the black-hole interior. This analysis leads to a broadly-applicable physical principle: in a theory of quantum gravity, a copy of all the information on a Cauchy slice is also available near the boundary of the slice. This principle can be made precise and established — under weak assumptions, and using only low-energy techniques — in asymptotically global AdS and in four dimensional asymptotically flat spacetime. When applied to black holes, this principle tells us that the exterior of the black hole always retains a complete copy of the information in the interior. We show that accounting for this redundancy provides a resolution of the information paradox for evaporating black holes ...
Tuesday, September 07, 2021
Kathryn Paige Harden Profile in The New Yorker (Behavior Genetics)
Can Progressives Be Convinced That Genetics Matters?
The behavior geneticist Kathryn Paige Harden is waging a two-front campaign: on her left are those who assume that genes are irrelevant, on her right those who insist that they’re everything.
Gideon Lewis-KrausGideon Lewis-Kraus is a talented writer who also wrote a very nice article on the NYTimes / Slate Star Codex hysteria last summer.
1. The paper Harden was attacked for sharing while a visiting scholar at the Russell Sage Foundation: Game Over: Genomic Prediction of Social Mobility2. Harden's paper on polygenic scores and mathematics progression in high school: Genomic prediction of student flow through high school math curriculum3. Vox article; Turkheimer and Harden drawn into debate including Charles Murray and Sam Harris: Scientific Consensus on Cognitive Ability?
On the genetic architecture of intelligence and other quantitative traits
https://arxiv.org/abs/1408.3421
How do genes affect cognitive ability or other human quantitative traits such as height or disease risk? Progress on this challenging question is likely to be significant in the near future. I begin with a brief review of psychometric measurements of intelligence, introducing the idea of a "general factor" or g score. The main results concern the stability, validity (predictive power), and heritability of adult g. The largest component of genetic variance for both height and intelligence is additive (linear), leading to important simplifications in predictive modeling and statistical estimation. Due mainly to the rapidly decreasing cost of genotyping, it is possible that within the coming decade researchers will identify loci which account for a significant fraction of total g variation. In the case of height analogous efforts are well under way. I describe some unpublished results concerning the genetic architecture of height and cognitive ability, which suggest that roughly 10k moderately rare causal variants of mostly negative effect are responsible for normal population variation. Using results from Compressed Sensing (L1-penalized regression), I estimate the statistical power required to characterize both linear and nonlinear models for quantitative traits. The main unknown parameter s (sparsity) is the number of loci which account for the bulk of the genetic variation. The required sample size is of order 100s, or roughly a million in the case of cognitive ability.The predictions in my 2012 BGA talk and in the 2014 review article above have mostly been validated. Research advances often pass through the following phases of reaction from the scientific community:
1. It's wrong ("genes don't affect intelligence! anyway too complex to figure out... we hope")
2. It's trivial ("ofc with lots of data you can do anything... knew it all along")
3. I did it first ("please cite my important paper on this")Or, as sometimes attributed to Gandhi: "First they ignore you, then they laugh at you, then they fight you, then you win.”
Monday, July 19, 2021
The History of the Planck Length and the Madness of Crowds
I had forgotten about the 2005-06 email correspondence reproduced below, but my collaborator Xavier Calmet reminded me of it today and I was able to find these messages.
The idea of a minimal length of order the Planck length, arising due to quantum gravity (i.e., quantum fluctuations in the structure of spacetime), is now widely accepted by theoretical physicists. But as Professor Mead (University of Minnesota, now retired) elaborates, based on his own experience, it was considered preposterous for a long time.
Large groups of people can be wrong for long periods of time -- in financial markets, academia, even theoretical physics.
Our paper, referred to by Mead, is
Minimum Length from Quantum Mechanics and Classical General RelativityX. Calmet, M. Graesser, and S. Hsu
Phys Rev Letters Vol. 93, 21101 (2004)
The related idea, first formulated by R. Buniy, A. Zee, and myself, that the structure of Hilbert Space itself is likely discrete (or "granular") at some fundamental level, is currently considered preposterous, but time will tell.
More here.
At bottom I include a relevant excerpt from correspondence with Freeman Dyson in 2005.
Dear Drs. Calmet, Graesser, Hsu,
I read with interest your article in Phys Rev Letters Vol. 93, 21101 (2004), and was pleasantly surprised to see my 1964 paper cited (second citation of your ref. 1). Not many people have cited this paper, and I think it was pretty much forgotten the day it was published, & has remained so ever since. To me, your paper shows again that, no matter how one looks at it, one runs into problems trying to measure a distance (or synchronize clocks) with greater accuracy than the Planck length (or time).
I feel rather gratified that the physics community, which back then considered the idea of the Planck length as a fundamental limitation to be quite preposterous, has since come around to (more or less) my opinion. Obviously, I deserve ZERO credit for this, since I'm sure that the people who finally reached this conclusion, whoever they were, were unaware of my work. To me, this is better than if they had been influenced by me, since it's good to know that the principles of physics lead to this conclusion, rather than the influence of an individual. I hope that makes sense. ...
You might be amused by one story about how I finally got the (first) paper published after 5 years of referee problems. A whole series of referees had claimed that my eq. (1), which is related to your eq. (1), could not be true. I suspect that they just didn't want to read any further. Nothing I could say would convince them, though I'm sure you would agree that the result is transparently obvious. So I submitted another paper which consisted of nothing but a lengthy detailed proof of eq. (1), without mentioning the connection with the gravitation paper. The referees of THAT paper rejected it on the grounds that the result was trivially obvious!! When I pointed out this discrepancy to the editors, I got the gravitation paper reconsidered and eventually published.
But back then no one considered the Planck length to be a candidate as a fundamental limitation. Well, almost no one. I did receive support from Henry Primakoff, David Bohm, and Roger Penrose. As far as I can recall, these were the only theoretical physicists of note who were willing to take this idea seriously (and I talked to many, in addition to reading the reports of all the referees).
Well anyway, I greet you, thank you for your paper and for the citation, and hope you haven't found this e-mail too boring.
Yours Sincerely,
C. Alden Mead
Dear Dr. Mead,
Thank you very much for your email message. It is fascinating to learn the history behind your work. We found your paper to be clearly written and useful.
Amusingly, we state at the beginning of our paper something like "it is widely believed..." that there is a fundamental Planck-length limit. I am sure your paper made a contribution to this change in attitude. The paper is not obscure as we were able to find it without much digging.
Your story about the vicissitudes of publishing rings true to me. I find such stories reassuring given the annoying obstacles we all face in trying to make our little contributions to science.
Finally, we intend to have a look at your second paper. Perhaps we will find another interesting application of your ideas.
Warm regards,
Stephen Hsu
Xavier Calmet
Michael Graesser
Dear Steve,
Many thanks for your kind reply. I find the information quite interesting, though as you say it leaves some historical questions unanswered. I think that Planck himself arrived at his length by purely dimensional considerations, and he supposedly considered this very important.
As you point out, it's physically very reasonable, perhaps more so in view of more recent developments. It seemed physically reasonable to me back in 1959, but not to most of the mainstream theorists of the time.
I think that physical considerations (such as yours and mine) and mathematical ones should support and complement each other. The Heisenberg-Bohr thought experiments tell us what a correct mathematical formalism should provide, and the formal quantum mechanics does this and, of course, much more. Same with the principle of equivalence and general relativity. Now, the physical ideas regarding the Planck length & time may serve as a guide in constructing a satisfactory formalism. Perhaps string theory will prove to be the answer, but I must admit that I'm ignorant of all details of that theory.
Anyway, I'm delighted to correspond with all of you as much as you wish, but I emphasize that I don't want to be intrusive or become a nuisance.
As my wife has written you (her idea, not mine), your e-mail was a nice birthday present.
Kindest Regards, Alden
... to me the most interesting is the discrete Hilbert Space paper, especially your reference [2] proving that lengths cannot be measured with error smaller than the Planck length. I was unaware of this reference but I had reached the same conclusion independently.
Sunday, May 02, 2021
40 Years of Quantum Computation and Quantum Information
This is a great article on the 1981 conference which one could say gave birth to quantum computing / quantum information.
Technology Review: Quantum computing as we know it got its start 40 years ago this spring at the first Physics of Computation Conference, organized at MIT’s Endicott House by MIT and IBM and attended by nearly 50 researchers from computing and physics—two groups that rarely rubbed shoulders.
Twenty years earlier, in 1961, an IBM researcher named Rolf Landauer had found a fundamental link between the two fields: he proved that every time a computer erases a bit of information, a tiny bit of heat is produced, corresponding to the entropy increase in the system. In 1972 Landauer hired the theoretical computer scientist Charlie Bennett, who showed that the increase in entropy can be avoided by a computer that performs its computations in a reversible manner. Curiously, Ed Fredkin, the MIT professor who cosponsored the Endicott Conference with Landauer, had arrived at this same conclusion independently, despite never having earned even an undergraduate degree. Indeed, most retellings of quantum computing’s origin story overlook Fredkin’s pivotal role.
Fredkin’s unusual career began when he enrolled at the California Institute of Technology in 1951. Although brilliant on his entrance exams, he wasn’t interested in homework—and had to work two jobs to pay tuition. Doing poorly in school and running out of money, he withdrew in 1952 and enlisted in the Air Force to avoid being drafted for the Korean War.
A few years later, the Air Force sent Fredkin to MIT Lincoln Laboratory to help test the nascent SAGE air defense system. He learned computer programming and soon became one of the best programmers in the world—a group that probably numbered only around 500 at the time.
Upon leaving the Air Force in 1958, Fredkin worked at Bolt, Beranek, and Newman (BBN), which he convinced to purchase its first two computers and where he got to know MIT professors Marvin Minsky and John McCarthy, who together had pretty much established the field of artificial intelligence. In 1962 he accompanied them to Caltech, where McCarthy was giving a talk. There Minsky and Fredkin met with Richard Feynman ’39, who would win the 1965 Nobel Prize in physics for his work on quantum electrodynamics. Feynman showed them a handwritten notebook filled with computations and challenged them to develop software that could perform symbolic mathematical computations. ...
... in 1974 he headed back to Caltech to spend a year with Feynman. The deal was that Fredkin would teach Feynman computing, and Feynman would teach Fredkin quantum physics. Fredkin came to understand quantum physics, but he didn’t believe it. He thought the fabric of reality couldn’t be based on something that could be described by a continuous measurement. Quantum mechanics holds that quantities like charge and mass are quantized—made up of discrete, countable units that cannot be subdivided—but that things like space, time, and wave equations are fundamentally continuous. Fredkin, in contrast, believed (and still believes) with almost religious conviction that space and time must be quantized as well, and that the fundamental building block of reality is thus computation. Reality must be a computer! In 1978 Fredkin taught a graduate course at MIT called Digital Physics, which explored ways of reworking modern physics along such digital principles.
Feynman, however, remained unconvinced that there were meaningful connections between computing and physics beyond using computers to compute algorithms. So when Fredkin asked his friend to deliver the keynote address at the 1981 conference, he initially refused. When promised that he could speak about whatever he wanted, though, Feynman changed his mind—and laid out his ideas for how to link the two fields in a detailed talk that proposed a way to perform computations using quantum effects themselves.
Feynman explained that computers are poorly equipped to help simulate, and thereby predict, the outcome of experiments in particle physics—something that’s still true today. Modern computers, after all, are deterministic: give them the same problem, and they come up with the same solution. Physics, on the other hand, is probabilistic. So as the number of particles in a simulation increases, it takes exponentially longer to perform the necessary computations on possible outputs. The way to move forward, Feynman asserted, was to build a computer that performed its probabilistic computations using quantum mechanics.
[ Note to reader: the discussion in the last sentences above is a bit garbled. The exponential difficulty that classical computers have with quantum calculations has to do with entangled states which live in Hilbert spaces of exponentially large dimension. Probability is not really the issue; the issue is the huge size of the space of possible states. Indeed quantum computations are strictly deterministic unitary operations acting in this Hilbert space. ]
Feynman's 1981 lecture Simulating Physics With Computers.Feynman hadn’t prepared a formal paper for the conference, but with the help of Norm Margolus, PhD ’87, a graduate student in Fredkin’s group who recorded and transcribed what he said there, his talk was published in the International Journal of Theoretical Physics under the title “Simulating Physics with Computers.” ...
We derive a fundamental upper bound on the rate at which a device can process information (i.e., the number of logical operations per unit time), arising from quantum mechanics and general relativity. In Planck units a device of volume V can execute no more than the cube root of V operations per unit time. We compare this to the rate of information processing performed by nature in the evolution of physical systems, and find a connection to black hole entropy and the holographic principle.
Physics of Computation Conference, Endicott House, MIT, May 6–8, 1981. 1 Freeman Dyson, 2 Gregory Chaitin, 3 James Crutchfield, 4 Norman Packard, 5 Panos Ligomenides, 6 Jerome Rothstein, 7 Carl Hewitt, 8 Norman Hardy, 9 Edward Fredkin, 10 Tom Toffoli, 11 Rolf Landauer, 12 John Wheeler, 13 Frederick Kantor, 14 David Leinweber, 15 Konrad Zuse, 16 Bernard Zeigler, 17 Carl Adam Petri, 18 Anatol Holt, 19 Roland Vollmar, 20 Hans Bremerman, 21 Donald Greenspan, 22 Markus Buettiker, 23 Otto Floberth, 24 Robert Lewis, 25 Robert Suaya, 26 Stand Kugell, 27 Bill Gosper, 28 Lutz Priese, 29 Madhu Gupta, 30 Paul Benioff, 31 Hans Moravec, 32 Ian Richards, 33 Marian Pour-El, 34 Danny Hillis, 35 Arthur Burks, 36 John Cocke, 37 George Michaels, 38 Richard Feynman, 39 Laurie Lingham, 40 P. S. Thiagarajan, 41 Marin Hassner, 42 Gerald Vichnaic, 43 Leonid Levin, 44 Lev Levitin, 45 Peter Gacs, 46 Dan Greenberger. (Photo courtesy Charles Bennett)
Wednesday, March 10, 2021
Academic Freedom Alliance
Chronicle: When I spoke to the Princeton University legal scholar and political philosopher Robert P. George in August, he offered a vivid zoological metaphor to describe what happens when outrage mobs attack academics. When hunted by lions, herds of zebras “fly off in a million directions, and the targeted member is easily taken down and destroyed and eaten.” A herd of elephants, by contrast, will “circle around the vulnerable elephant.”
... What had begun as a group of 20 Princeton professors organized to defend academic freedom at one college was rapidly scaling up its ambitions and capacity: It would become a nationwide organization. George had already hired an executive director and secured millions in funding.
... Today, that organization, the Academic Freedom Alliance, formally issued a manifesto declaring that “an attack on academic freedom anywhere is an attack on academic freedom everywhere,” and committing its nearly 200 members to providing aid and support in defense of “freedom of thought and expression in their work as researchers and writers or in their lives as citizens,” “freedom to design courses and conduct classes using reasonable pedagogical judgment,” and “freedom from ideological tests, affirmations, and oaths.”
... All members of the alliance have an automatic right for requests for legal aid to be considered, but the organization is also open to considering the cases of faculty nonmembers, university staff, or even students on a case-by-case basis. The alliance’s legal-advisory committee includes well-known lawyers such as Floyd Abrams and the prolific U.S. Supreme Court litigator Lisa S. Blatt.
When I spoke to him in February, as the date of AFA’s public announcement drew closer, George expressed surprise and satisfaction at the success the organization had found in signing up liberals and progressives. “If anything we’ve gone too far — we’re imbalanced over to the left side of the agenda,” he noted wryly. “That’s because our yield was a little higher than we expected it to be when we got in touch with folks.”
The yield was higher, as George would learn, quoting one such progressive member, because progressives in academe often feel themselves to be even more closely monitored for ideological orthodoxy by students and activist colleagues than their conservative peers. “‘You conservative guys, people like you and Adrian Vermeule, you think you’re vulnerable. You’re not nearly as vulnerable as we liberals are,’” George quoted this member as saying. “They are absolutely terrified, and they know they can never keep up with the wokeness. What’s OK today is over the line tomorrow, and nobody gave you the memo.”
George went on to note that some of the progressives he spoke with were indeed too frightened of the very censorious atmosphere that the alliance proposes to challenge to be willing to affiliate with it, at least at the outset.
... Nadine Strossen, a New York Law School law professor and former president of the ACLU, emphasized the problem of self-censorship that she saw the alliance as counteracting. “When somebody is attacked by a university official or, for lack of a better term, a Twitter mob, there are constant reports from all individuals targeted that they receive so many private communications and emails saying ‘I support you and agree with you, but I just can’t say it publicly.’”
She hopes that the combined reputations of the organization’s members will provide a permission structure allowing other faculty members to stand up for their private convictions in public. While a lawsuit can vindicate someone’s constitutional or contractual rights, Strossen noted, only a change in the cultural atmosphere around these issues — a preference for open debate and free exchange over stigmatization and punishment as the default way to negotiate controversy in academe — could resolve the overall problem.
The Princeton University political historian Keith E. Whittington, who is chairman of the alliance’s academic committee, echoed Strossen’s point. The recruitment effort, he said, aimed to gather “people who would be respectable and hopefully influential to college administrators — such that if a group like that came to them and said ‘Look, you’re behaving badly here on these academic-freedom principles,’ this is a group that they might pay attention to.”
“Administrators feel very buffeted by political pressures, often only from one side,” Whittington told me. “They hear from all the people who are demanding action, and the easiest, lowest-cost thing to do in those circumstances is to go with the flow and throw the prof under the bus. So we do hope that we can help balance that equation a little bit, make it a little more costly for administrators.” ...Perhaps amusingly, I am one of the progressive founding members of AFA. At least, I have for most of my life been politically to the left of Robby George and many of the original Princeton 20 that started the project.
6. Many professors and non-academics who supported me were afraid to sign our petition -- they did not want to be subject to mob attack. We received many communications expressing this sentiment.
7. The victory of the twitter mob will likely have a chilling effect on academic freedom on campus.
... I’ve heard some college campuses where they don’t want to have a guest speaker who is too conservative or they don’t want to read a book if it has language that is offensive to African-Americans or somehow sends a demeaning signal towards women. I gotta tell you, I don’t agree with that either. I don’t agree that you, when you become students at colleges, have to be coddled and protected from different points of view. I think you should be able to — anybody who comes to speak to you and you disagree with, you should have an argument with ‘em. But you shouldn’t silence them by saying, "You can’t come because I'm too sensitive to hear what you have to say." That’s not the way we learn ...
Wednesday, February 03, 2021
Gerald Feinberg and The Prometheus Project
Saturday, September 12, 2020
Orwell: 1944, 1984, and Today
... Already history has in a sense ceased to exist, i.e. there is no such thing as a history of our own times which could be universally accepted, and the exact sciences are endangered as soon as military necessity ceases to keep people up to the mark. Hitler can say that the Jews started the war, and if he survives that will become official history. He can’t say that two and two are five, because for the purposes of, say, ballistics they have to make four. But if the sort of world that I am afraid of arrives, a world of two or three great superstates which are unable to conquer one another, two and two could become five if the fuhrer wished it. That, so far as I can see, is the direction in which we are actually moving ...
... intellectuals are more totalitarian in outlook than the common people. On the whole the English intelligentsia have opposed Hitler, but only at the price of accepting Stalin. Most of them are perfectly ready for dictatorial methods, secret police, systematic falsification of history etc. so long as they feel that it is on ‘our’ side.
there is no such thing as a history of our own times which could be universally accepted
the exact sciences are endangered
two and two could become five
dictatorial methods ... systematic falsification of history etc. so long as they feel that it is on ‘our’ side.
Of course, there is nothing new under the sun. It takes only a generation for costly lessons to be entirely forgotten...
Wikipedia: Trofim Denisovich Lysenko ...Soviet agronomist and biologist. Lysenko was a strong proponent of soft inheritance and rejected Mendelian genetics in favor of pseudoscientific ideas termed Lysenkoism.[1][2] In 1940, Lysenko became director of the Institute of Genetics within the USSR's Academy of Sciences, and he used his political influence and power to suppress dissenting opinions and discredit, marginalize, and imprison his critics, elevating his anti-Mendelian theories to state-sanctioned doctrine.
Soviet scientists who refused to renounce genetics were dismissed from their posts and left destitute. Hundreds if not thousands of others were imprisoned. Several were sentenced to death as enemies of the state, including the botanist Nikolai Vavilov. Scientific dissent from Lysenko's theories of environmentally acquired inheritance was formally outlawed in the Soviet Union in 1948. As a result of Lysenkoism and forced collectivization, 15-30 million Soviet and Chinese citizens starved to death in the Holodomor and the Great Chinese Famine. ...
In 1964, physicist Andrei Sakharov spoke out against Lysenko in the General Assembly of the Academy of Sciences of the USSR: "He is responsible for the shameful backwardness of Soviet biology and of genetics in particular, for the dissemination of pseudo-scientific views, for adventurism, for the degradation of learning, and for the defamation, firing, arrest, even death, of many genuine scientists."
Thursday, June 04, 2020
Leif Wenar on the Resource Curse and Impact Philosophy -- Manifold Episode #49
Corey and Steve interview Leif Wenar, Professor of Philosophy at Stanford University and author of Blood Oil. They begin with memories of Leif and Corey’s mutual friend David Foster Wallace and end with a discussion of John Rawls and Robert Nozick (Wenar's thesis advisor at Harvard, and a friend of Steve's). Corey asks whether Leif shares his view that analytic philosophy had become too divorced from wider intellectual life. Leif explains his effort to re-engage philosophy in the big issues of our day as Hobbes, Rousseau, Locke, Mill and Marx were in theirs. He details how a trip to Nigeria gave him insight into the real problems facing real people in oil-rich countries. Leif explains how the legal concept of “efficiency” led to the resource curse and argues that we should refuse to buy oil from countries that are not minimally accountable to their people. Steve notes that some may find this approach too idealistic and not in the US interest. Leif suggests that what philosophers can contribute is the ability to see the big synthetic picture in a complex world.
Transcript
Leif Wenar (Bio)
Blood Oil: Tyrants, Violence, and the Rules That Run the World
John Rawls - Stanford Encyclopedia of Philosophy
Robert Nozick - Stanford Encyclopedia of Philosophy
man·i·fold /ˈmanəˌfōld/ many and various.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point.
Steve Hsu and Corey Washington have been friends for almost 30 years, and between them hold PhDs in Neuroscience, Philosophy, and Theoretical Physics. Join them for wide ranging and unfiltered conversations with leading writers, scientists, technologists, academics, entrepreneurs, investors, and more.
Steve Hsu is VP for Research and Professor of Theoretical Physics at Michigan State University. He is also a researcher in computational genomics and founder of several Silicon Valley startups, ranging from information security to biotech. Educated at Caltech and Berkeley, he was a Harvard Junior Fellow and held faculty positions at Yale and the University of Oregon before joining MSU.
Corey Washington is Director of Analytics in the Office of Research and Innovation at Michigan State University. He was educated at Amherst College and MIT before receiving a PhD in Philosophy from Stanford and a PhD in a Neuroscience from Columbia. He held faculty positions at the University Washington and the University of Maryland. Prior to MSU, Corey worked as a biotech consultant and is founder of a medical diagnostics startup.
Saturday, May 09, 2020
Pure State Quantum Thermalization: from von Neumann to the Lab
Perhaps the most fundamental question in thermodynamics and statistical mechanics is: Why do systems tend to evolve toward thermal equilibrium? Equivalently, why does entropy tend to increase? Because Nature is quantum mechanical, a satisfactory answer to this question has to arise within quantum mechanics itself. The answer was given already in a 1929 paper by von Neumann. However, the ideas were not absorbed (were in fact misunderstood) by the physics community and only rediscovered in the 21st century! General awareness of these results is still rather limited.
See this 2011 post: Classics on the arxiv: von Neumann and the foundations of quantum statistical mechanics.
In modern language, we would say something to the effect that "typical" quantum pure states are highly entangled, and the density matrix describing any small sub-system (obtained by tracing over the rest of the pure state) is very close to micro-canonical (i.e., thermal). Under dynamical (Schrodinger) evolution, all systems (even those that are initially far from typical) spend nearly all of their time in a typical state (modulo some weak conditions on the Hamiltonian). Typicality of states is related to concentration of measure in high dimensional Hilbert spaces. One could even claim that the origin of thermodynamics lies in the geometry of Hilbert space itself.
[ It's worth noting that vN's paper does more than just demonstrate these results. It also gives an explicit construction of macroscopic classical (commuting) observables arising in a large Hilbert space. This construction would be a nice thing to include in textbooks for students trying to connect the classical and quantum worlds. ]
Recently I came across an experimental realization of these theoretical results, using cold atoms in an optical lattice (Greiner lab at Harvard):
Quantum thermalization through entanglement in an isolated many-body systemNote, given the original vN results I think the Eigenstate Thermalization Hypothesis is only of limited interest. [ But see comments for more discussion... ] The point is that this is a laboratory demonstration of pure state thermalization, anticipated in 1929 by vN.
Science 353, 794-800 (2016) arXiv:1603.04409v3
The concept of entropy is fundamental to thermalization, yet appears at odds with basic principles in quantum mechanics. Statistical mechanics relies on the maximization of entropy for a system at thermal equilibrium. However, an isolated many-body system initialized in a pure state will remain pure during Schrodinger evolution, and in this sense has static, zero entropy. The underlying role of quantum mechanics in many-body physics is then seemingly antithetical to the success of statistical mechanics in a large variety of systems. Here we experimentally study the emergence of statistical mechanics in a quantum state, and observe the fundamental role of quantum entanglement in facilitating this emergence. We perform microscopy on an evolving quantum system, and we see thermalization occur on a local scale, while we measure that the full quantum state remains pure. We directly measure entanglement entropy and observe how it assumes the role of the thermal entropy in thermalization. Although the full state remains measurably pure, entanglement creates local entropy that validates the use of statistical physics for local observables. In combination with number-resolved, single-site imaging, we demonstrate how our measurements of a pure quantum state agree with the Eigenstate Thermalization Hypothesis and thermal ensembles in the presence of a near-volume law in the entanglement entropy.
Another aspect of quantum thermalization that is still not very well appreciated is that approach to equilibrium can have a very different character than what students are taught in statistical mechanics. The physical picture behind the Boltzmann equation is semi-classical: collisions between atoms happen in serial as two gases equilibrate. But Schrodinger evolution of the pure state (all the degrees of freedom together) toward typicality can take advantage of quantum parallelism: all possible collisions take place on different parts of the quantum superposition state. Consequently, the timescale for quantum thermalization can be much shorter than in the semi-classical Boltzmann description.
In 2015 my postdoc C.M. Ho (now director of an AI lab in Silicon Valley) and I pointed out that quantum thermalization was likely already realized in heavy ion collisions at RHIC and CERN, and that the quantum nature of the process was responsible for the surprisingly short time required to approach equilibrium (equivalently, to generate large amounts of entanglement entropy).
Entanglement and fast thermalization in heavy ion collisions (see also slides here).
Entanglement and Fast Quantum Thermalization in Heavy Ion Collisions (arXiv:1506.03696)
Chiu Man Ho, Stephen D. H. Hsu
Let A be subsystem of a larger system A∪B, and ψ be a typical state from the subspace of the Hilbert space H_AB satisfying an energy constraint. Then ρ_A(ψ)=Tr_B |ψ⟩⟨ψ| is nearly thermal. We discuss how this observation is related to fast thermalization of the central region (≈A) in heavy ion collisions, where B represents other degrees of freedom (soft modes, hard jets, co-linear particles) outside of A. Entanglement between the modes in A and B plays a central role; the entanglement entropy S_A increases rapidly in the collision. In gauge-gravity duality, S_A is related to the area of extremal surfaces in the bulk, which can be studied using gravitational duals.
An earlier blog post Ulam on physical intuition and visualization mentioned the difference between intuition for familiar semiclassical (incoherent) particle phenomena, versus for intrinsically quantum mechanical (coherent) phenomena such as the spread of entanglement and its relation to thermalization.
[Ulam:] ... Most of the physics at Los Alamos could be reduced to the study of assemblies of particles interacting with each other, hitting each other, scattering, sometimes giving rise to new particles. Strangely enough, the actual working problems did not involve much of the mathematical apparatus of quantum theory although it lay at the base of the phenomena, but rather dynamics of a more classical kind—kinematics, statistical mechanics, large-scale motion problems, hydrodynamics, behavior of radiation, and the like. In fact, compared to quantum theory the project work was like applied mathematics as compared with abstract mathematics. If one is good at solving differential equations or using asymptotic series, one need not necessarily know the foundations of function space language. It is needed for a more fundamental understanding, of course. In the same way, quantum theory is necessary in many instances to explain the data and to explain the values of cross sections. But it was not crucial, once one understood the ideas and then the facts of events involving neutrons reacting with other nuclei.This "dynamics of a more classical kind" did not require intuition for entanglement or high dimensional Hilbert spaces. But see von Neumann and the foundations of quantum statistical mechanics for examples of the latter.
Blog Archive
Labels
- physics (420)
- genetics (325)
- globalization (301)
- genomics (295)
- technology (282)
- brainpower (280)
- finance (275)
- american society (261)
- China (249)
- innovation (231)
- ai (206)
- economics (202)
- psychometrics (190)
- science (172)
- psychology (169)
- machine learning (166)
- biology (163)
- photos (162)
- genetic engineering (150)
- universities (150)
- travel (144)
- podcasts (143)
- higher education (141)
- startups (139)
- human capital (127)
- geopolitics (124)
- credit crisis (115)
- political correctness (108)
- iq (107)
- quantum mechanics (107)
- cognitive science (103)
- autobiographical (97)
- politics (93)
- careers (90)
- bounded rationality (88)
- social science (86)
- history of science (85)
- realpolitik (85)
- statistics (83)
- elitism (81)
- talks (80)
- evolution (79)
- credit crunch (78)
- biotech (76)
- genius (76)
- gilded age (73)
- income inequality (73)
- caltech (68)
- books (64)
- academia (62)
- history (61)
- intellectual history (61)
- MSU (60)
- sci fi (60)
- harvard (58)
- silicon valley (58)
- mma (57)
- mathematics (55)
- education (53)
- video (52)
- kids (51)
- bgi (48)
- black holes (48)
- cdo (45)
- derivatives (43)
- neuroscience (43)
- affirmative action (42)
- behavioral economics (42)
- economic history (42)
- literature (42)
- nuclear weapons (42)
- computing (41)
- jiujitsu (41)
- physical training (40)
- film (39)
- many worlds (39)
- quantum field theory (39)
- expert prediction (37)
- ufc (37)
- bjj (36)
- bubbles (36)
- mortgages (36)
- google (35)
- race relations (35)
- hedge funds (34)
- security (34)
- von Neumann (34)
- meritocracy (31)
- feynman (30)
- quants (30)
- taiwan (30)
- efficient markets (29)
- foo camp (29)
- movies (29)
- sports (29)
- music (28)
- singularity (27)
- entrepreneurs (26)
- conferences (25)
- housing (25)
- obama (25)
- subprime (25)
- venture capital (25)
- berkeley (24)
- epidemics (24)
- war (24)
- wall street (23)
- athletics (22)
- russia (22)
- ultimate fighting (22)
- cds (20)
- internet (20)
- new yorker (20)
- blogging (19)
- japan (19)
- scifoo (19)
- christmas (18)
- dna (18)
- gender (18)
- goldman sachs (18)
- university of oregon (18)
- cold war (17)
- cryptography (17)
- freeman dyson (17)
- smpy (17)
- treasury bailout (17)
- algorithms (16)
- autism (16)
- personality (16)
- privacy (16)
- Fermi problems (15)
- cosmology (15)
- happiness (15)
- height (15)
- india (15)
- oppenheimer (15)
- probability (15)
- social networks (15)
- wwii (15)
- fitness (14)
- government (14)
- les grandes ecoles (14)
- neanderthals (14)
- quantum computers (14)
- blade runner (13)
- chess (13)
- hedonic treadmill (13)
- nsa (13)
- philosophy of mind (13)
- research (13)
- aspergers (12)
- climate change (12)
- harvard society of fellows (12)
- malcolm gladwell (12)
- net worth (12)
- nobel prize (12)
- pseudoscience (12)
- Einstein (11)
- art (11)
- democracy (11)
- entropy (11)
- geeks (11)
- string theory (11)
- television (11)
- Go (10)
- ability (10)
- complexity (10)
- dating (10)
- energy (10)
- football (10)
- france (10)
- italy (10)
- mutants (10)
- nerds (10)
- olympics (10)
- pop culture (10)
- crossfit (9)
- encryption (9)
- eugene (9)
- flynn effect (9)
- james salter (9)
- simulation (9)
- tail risk (9)
- turing test (9)
- alan turing (8)
- alpha (8)
- ashkenazim (8)
- data mining (8)
- determinism (8)
- environmentalism (8)
- games (8)
- keynes (8)
- manhattan (8)
- new york times (8)
- pca (8)
- philip k. dick (8)
- qcd (8)
- real estate (8)
- robot genius (8)
- success (8)
- usain bolt (8)
- Iran (7)
- aig (7)
- basketball (7)
- free will (7)
- fx (7)
- game theory (7)
- hugh everett (7)
- inequality (7)
- information theory (7)
- iraq war (7)
- markets (7)
- paris (7)
- patents (7)
- poker (7)
- teaching (7)
- vietnam war (7)
- volatility (7)
- anthropic principle (6)
- bayes (6)
- class (6)
- drones (6)
- econtalk (6)
- empire (6)
- global warming (6)
- godel (6)
- intellectual property (6)
- nassim taleb (6)
- noam chomsky (6)
- prostitution (6)
- rationality (6)
- academia sinica (5)
- bobby fischer (5)
- demographics (5)
- fake alpha (5)
- kasparov (5)
- luck (5)
- nonlinearity (5)
- perimeter institute (5)
- renaissance technologies (5)
- sad but true (5)
- software development (5)
- solar energy (5)
- warren buffet (5)
- 100m (4)
- Poincare (4)
- assortative mating (4)
- bill gates (4)
- borges (4)
- cambridge uk (4)
- censorship (4)
- charles darwin (4)
- computers (4)
- creativity (4)
- hormones (4)
- humor (4)
- judo (4)
- kerviel (4)
- microsoft (4)
- mixed martial arts (4)
- monsters (4)
- moore's law (4)
- soros (4)
- supercomputers (4)
- trento (4)
- 200m (3)
- babies (3)
- brain drain (3)
- charlie munger (3)
- cheng ting hsu (3)
- chet baker (3)
- correlation (3)
- ecosystems (3)
- equity risk premium (3)
- facebook (3)
- fannie (3)
- feminism (3)
- fst (3)
- intellectual ventures (3)
- jim simons (3)
- language (3)
- lee kwan yew (3)
- lewontin fallacy (3)
- lhc (3)
- magic (3)
- michael lewis (3)
- mit (3)
- nathan myhrvold (3)
- neal stephenson (3)
- olympiads (3)
- path integrals (3)
- risk preference (3)
- search (3)
- sec (3)
- sivs (3)
- society generale (3)
- systemic risk (3)
- thailand (3)
- twitter (3)
- alibaba (2)
- bear stearns (2)
- bruce springsteen (2)
- charles babbage (2)
- cloning (2)
- david mamet (2)
- digital books (2)
- donald mackenzie (2)
- drugs (2)
- dune (2)
- exchange rates (2)
- frauds (2)
- freddie (2)
- gaussian copula (2)
- heinlein (2)
- industrial revolution (2)
- james watson (2)
- ltcm (2)
- mating (2)
- mba (2)
- mccain (2)
- monkeys (2)
- national character (2)
- nicholas metropolis (2)
- no holds barred (2)
- offices (2)
- oligarchs (2)
- palin (2)
- population structure (2)
- prisoner's dilemma (2)
- singapore (2)
- skidelsky (2)
- socgen (2)
- sprints (2)
- star wars (2)
- ussr (2)
- variance (2)
- virtual reality (2)
- war nerd (2)
- abx (1)
- anathem (1)
- andrew lo (1)
- antikythera mechanism (1)
- athens (1)
- atlas shrugged (1)
- ayn rand (1)
- bay area (1)
- beats (1)
- book search (1)
- bunnie huang (1)
- car dealers (1)
- carlos slim (1)
- catastrophe bonds (1)
- cdos (1)
- ces 2008 (1)
- chance (1)
- children (1)
- cochran-harpending (1)
- cpi (1)
- david x. li (1)
- dick cavett (1)
- dolomites (1)
- eharmony (1)
- eliot spitzer (1)
- escorts (1)
- faces (1)
- fads (1)
- favorite posts (1)
- fiber optic cable (1)
- francis crick (1)
- gary brecher (1)
- gizmos (1)
- greece (1)
- greenspan (1)
- hypocrisy (1)
- igon value (1)
- iit (1)
- inflation (1)
- information asymmetry (1)
- iphone (1)
- jack kerouac (1)
- jaynes (1)
- jazz (1)
- jfk (1)
- john dolan (1)
- john kerry (1)
- john paulson (1)
- john searle (1)
- john tierney (1)
- jonathan littell (1)
- las vegas (1)
- lawyers (1)
- lehman auction (1)
- les bienveillantes (1)
- lowell wood (1)
- lse (1)
- machine (1)
- mcgeorge bundy (1)
- mexico (1)
- michael jackson (1)
- mickey rourke (1)
- migration (1)
- money:tech (1)
- myron scholes (1)
- netwon institute (1)
- networks (1)
- newton institute (1)
- nfl (1)
- oliver stone (1)
- phil gramm (1)
- philanthropy (1)
- philip greenspun (1)
- portfolio theory (1)
- power laws (1)
- pyschology (1)
- randomness (1)
- recession (1)
- sales (1)
- skype (1)
- standard deviation (1)
- starship troopers (1)
- students today (1)
- teleportation (1)
- tierney lab blog (1)
- tomonaga (1)
- tyler cowen (1)
- venice (1)
- violence (1)
- virtual meetings (1)
- wealth effect (1)




















