I came across this nice discussion at LessWrong which is similar to my old post Success vs Ability. The illustration below shows why even a strong predictor of outcome is seldom able to pick out the very top performer: e.g., taller people are on average better at basketball, but the best player in the world is not the tallest; smarter people are on average better at making money, but the richest person in the world is not the smartest, etc.
This seems like a trivial point (as are most things, when explained clearly), however, it still eludes the vast majority. For example, in the Atlantic article I linked to in the earlier post Creative Minds, the neuroscientist professor who studies creative genius misunderstands the implications of the Terman study. She repeats the common claim that Terman's study fails to support the importance of high cognitive ability to "genius"-level achievement: none of the Termites won a Nobel prize, whereas Shockley and Alvarez, who narrowly missed the (verbally loaded) Stanford-Binet cut for the study, each won for work in experimental physics. But luck, drive, creativity, and other factors, all at least somewhat independent of intelligence, influence success in science. Combine this with the fact that there are exponentially more people a bit below the Terman cut than above it, and Terman's results do little more than confirm that cognitive ability is positively but not perfectly correlated with creative output.
In the SMPY study probability of having published a literary work or earned a patent was increasing with ability even within the top 1%. The "IQ over 120 doesn't matter" meme falls apart if one measures individual likelihood of success, as opposed to the total number of individuals at, e.g., IQ 120 vs IQ 145, who have achieved some milestone.
It is plausible that, e.g., among top execs or scientists or engineers there are roughly equal numbers of IQ 120 and IQ 145 individuals (the actual numbers could vary depending on how the groups are defined). But the base population of the former group is 100 times that of the latter! (IQ 120 is about top 10% and IQ 145 is roughly top 0.1% in the population.) This means, e.g., that the probability that an IQ 145 person becomes a top scientist could be ~100x higher than for an IQ 120 person.
This topic came up last night in Hong Kong, at dinner with two hedge funders (Caltech/MIT guys with PhDs) who have had long careers in finance. Both observed that 20 years ago it was nearly impossible to predict which of their colleagues and peers would go on to make vast fortunes, as opposed to becoming merely rich.
Pessimism of the Intellect, Optimism of the Will Favorite posts | Manifold podcast | Twitter: @hsu_steve
Showing posts with label correlation. Show all posts
Showing posts with label correlation. Show all posts
Saturday, July 26, 2014
Thursday, February 27, 2014
Correlation and Variance
In social science a correlation of R = 0.4 between two variables is typically considered a strong result. For example, both high school GPA and SAT score predict college performance with R ~ 0.4. Combining the two, one can achieve R ~ 0.5 to 0.6, depending on major. See Table 2 in my paper Data Mining the University.
It's easy to understand why SAT and college GPA are not more strongly correlated: some students work harder than others in school, and effort level is largely independent of SAT score. (For psychometricians, Conscientiousness and Intelligence are largely uncorrelated.) Also, it's typically students in the upper half or quarter of cognitive ability relative to the general population that earn college degrees. If the entire range of students were enrolled in college the SAT-GPA correlation would be higher. Finally, there is, of course, inherent randomness in grading.
The figure below, from the Wikipedia entry on correlation, helps to visualize the meaning of various R values.
I often hear complaints of the type: "R = 0.4 is negligible! It only accounts for 16% percent of the total variance, leaving 84% unaccounted for!" (The fraction of variance unaccounted for is 1 - R^2.) This kind of remark even finds its way into quantitative genetics and genomics: "But the alleles so far discovered only account for 20% of total heritability! OMG GWAS is a failure!"
This is a misleading complaint. Variance is the sum of squared deviations, so it does not even carry the same units as the quantity of interest. Variance is a convenient quantity because it is additive for uncorrelated variables, but it leads to distorted intuition for effect size: SDs are the natural unit, not SD^2!
A less misleading way to think about the correlation R is as follows: given X,Y from a standardized bivariate distribution with correlation R, an increase in X leads to an expected increase in Y: dY = R dX. In other words, students with +1 SD SAT score have, on average, roughly +0.4 SD college GPAs. Similarly, students with +1 SD college GPAs have on average +0.4 SAT.
Alternatively, if we assume that Y is the sum of (standardized) X and a noise term (the sum rescaled so that Y remains standardized), the standard deviation of the noise term is given by sqrt(1- R^2)/R ~ 1/R for modest correlations. That is, the standard deviation of the noise is about 1/R times larger than that of the signal X. When the correlation is 1/sqrt(2) ~ 0.7 the signal and noise terms have equal SD and variance. ("Half of the variance is accounted for by the predictor X"; see for comparison the figure above with R = 0.8.)
As another example, test-retest correlations of SAT or IQ are pretty high, R ~ 0.9 or more. What fluctuations in score does this imply? In the model above the noise SD = sqrt(1 - 0.81)/0.9 ~ 0.5, so we'd expect the test score of an individual to fluctuate by about half a population SD (i.e., ~7 points for IQ or ~50 points per SAT section). This is similar to what is observed in the SAT data of Oregon students.
I worked this out during a boring meeting. It was partially stimulated by this article in the New Yorker about training for the SAT (if you go there, come back and read this to unfog your brain), and activist nonsense like this. Let me know if I made mistakes ... 8-)
tl;dr Go back to bed. Big people are talking.
It's easy to understand why SAT and college GPA are not more strongly correlated: some students work harder than others in school, and effort level is largely independent of SAT score. (For psychometricians, Conscientiousness and Intelligence are largely uncorrelated.) Also, it's typically students in the upper half or quarter of cognitive ability relative to the general population that earn college degrees. If the entire range of students were enrolled in college the SAT-GPA correlation would be higher. Finally, there is, of course, inherent randomness in grading.
The figure below, from the Wikipedia entry on correlation, helps to visualize the meaning of various R values.
I often hear complaints of the type: "R = 0.4 is negligible! It only accounts for 16% percent of the total variance, leaving 84% unaccounted for!" (The fraction of variance unaccounted for is 1 - R^2.) This kind of remark even finds its way into quantitative genetics and genomics: "But the alleles so far discovered only account for 20% of total heritability! OMG GWAS is a failure!"
This is a misleading complaint. Variance is the sum of squared deviations, so it does not even carry the same units as the quantity of interest. Variance is a convenient quantity because it is additive for uncorrelated variables, but it leads to distorted intuition for effect size: SDs are the natural unit, not SD^2!
A less misleading way to think about the correlation R is as follows: given X,Y from a standardized bivariate distribution with correlation R, an increase in X leads to an expected increase in Y: dY = R dX. In other words, students with +1 SD SAT score have, on average, roughly +0.4 SD college GPAs. Similarly, students with +1 SD college GPAs have on average +0.4 SAT.
Alternatively, if we assume that Y is the sum of (standardized) X and a noise term (the sum rescaled so that Y remains standardized), the standard deviation of the noise term is given by sqrt(1- R^2)/R ~ 1/R for modest correlations. That is, the standard deviation of the noise is about 1/R times larger than that of the signal X. When the correlation is 1/sqrt(2) ~ 0.7 the signal and noise terms have equal SD and variance. ("Half of the variance is accounted for by the predictor X"; see for comparison the figure above with R = 0.8.)
As another example, test-retest correlations of SAT or IQ are pretty high, R ~ 0.9 or more. What fluctuations in score does this imply? In the model above the noise SD = sqrt(1 - 0.81)/0.9 ~ 0.5, so we'd expect the test score of an individual to fluctuate by about half a population SD (i.e., ~7 points for IQ or ~50 points per SAT section). This is similar to what is observed in the SAT data of Oregon students.
I worked this out during a boring meeting. It was partially stimulated by this article in the New Yorker about training for the SAT (if you go there, come back and read this to unfog your brain), and activist nonsense like this. Let me know if I made mistakes ... 8-)
tl;dr Go back to bed. Big people are talking.
Thursday, March 02, 2006
Success vs ability

The figure above illustrates the correlation between two variables, let us say success and ability. Each point represents an individual whose level of success and ability are shown on the vertical and horizontal axes, respectively. In the figure, the correlation is high, but not 100%.
For example, in American football the ability axis might represent the quantities obsessively tracked by NFL scouts: sprinting speed (40 yard dash time), natural strength (bench press), etc., while the vertical axis represents actual output, like passes caught or rushing yards gained. In real life, output is never purely determined by a single, or even several, input ability or abilities. If nothing else, luck ensures that the correlation is imperfect. Sports fans know that the fastest wide receiver isn't necessarily the best, nor the tallest basketball center the most productive, even if being fast or tall confer specific advantages. In the figure, the most able individual is not the most successful. They are seldom the same individual unless the correlation is 100%
In science or academia, we might take the horizontal axis to represent raw intellectual ability. The graph tells us to expect that the smartest person is not necessarily the most successful. It also suggests a population of successful but insecure people (the upper right dots above the fit line -- they are dumber than peers of similar accomplishment) and a population of smart people who are bitter about their unrecognized genius (dots on far right below the fit line -- they are smarter than peers of similar accomplishment).
Subscribe to:
Posts (Atom)
Blog Archive
Labels
- physics (420)
- genetics (325)
- globalization (301)
- genomics (295)
- technology (282)
- brainpower (280)
- finance (275)
- american society (261)
- China (249)
- innovation (231)
- ai (206)
- economics (202)
- psychometrics (190)
- science (172)
- psychology (169)
- machine learning (166)
- biology (163)
- photos (162)
- genetic engineering (150)
- universities (150)
- travel (144)
- podcasts (143)
- higher education (141)
- startups (139)
- human capital (127)
- geopolitics (124)
- credit crisis (115)
- political correctness (108)
- iq (107)
- quantum mechanics (107)
- cognitive science (103)
- autobiographical (97)
- politics (93)
- careers (90)
- bounded rationality (88)
- social science (86)
- history of science (85)
- realpolitik (85)
- statistics (83)
- elitism (81)
- talks (80)
- evolution (79)
- credit crunch (78)
- biotech (76)
- genius (76)
- gilded age (73)
- income inequality (73)
- caltech (68)
- books (64)
- academia (62)
- history (61)
- intellectual history (61)
- MSU (60)
- sci fi (60)
- harvard (58)
- silicon valley (58)
- mma (57)
- mathematics (55)
- education (53)
- video (52)
- kids (51)
- bgi (48)
- black holes (48)
- cdo (45)
- derivatives (43)
- neuroscience (43)
- affirmative action (42)
- behavioral economics (42)
- economic history (42)
- literature (42)
- nuclear weapons (42)
- computing (41)
- jiujitsu (41)
- physical training (40)
- film (39)
- many worlds (39)
- quantum field theory (39)
- expert prediction (37)
- ufc (37)
- bjj (36)
- bubbles (36)
- mortgages (36)
- google (35)
- race relations (35)
- hedge funds (34)
- security (34)
- von Neumann (34)
- meritocracy (31)
- feynman (30)
- quants (30)
- taiwan (30)
- efficient markets (29)
- foo camp (29)
- movies (29)
- sports (29)
- music (28)
- singularity (27)
- entrepreneurs (26)
- conferences (25)
- housing (25)
- obama (25)
- subprime (25)
- venture capital (25)
- berkeley (24)
- epidemics (24)
- war (24)
- wall street (23)
- athletics (22)
- russia (22)
- ultimate fighting (22)
- cds (20)
- internet (20)
- new yorker (20)
- blogging (19)
- japan (19)
- scifoo (19)
- christmas (18)
- dna (18)
- gender (18)
- goldman sachs (18)
- university of oregon (18)
- cold war (17)
- cryptography (17)
- freeman dyson (17)
- smpy (17)
- treasury bailout (17)
- algorithms (16)
- autism (16)
- personality (16)
- privacy (16)
- Fermi problems (15)
- cosmology (15)
- happiness (15)
- height (15)
- india (15)
- oppenheimer (15)
- probability (15)
- social networks (15)
- wwii (15)
- fitness (14)
- government (14)
- les grandes ecoles (14)
- neanderthals (14)
- quantum computers (14)
- blade runner (13)
- chess (13)
- hedonic treadmill (13)
- nsa (13)
- philosophy of mind (13)
- research (13)
- aspergers (12)
- climate change (12)
- harvard society of fellows (12)
- malcolm gladwell (12)
- net worth (12)
- nobel prize (12)
- pseudoscience (12)
- Einstein (11)
- art (11)
- democracy (11)
- entropy (11)
- geeks (11)
- string theory (11)
- television (11)
- Go (10)
- ability (10)
- complexity (10)
- dating (10)
- energy (10)
- football (10)
- france (10)
- italy (10)
- mutants (10)
- nerds (10)
- olympics (10)
- pop culture (10)
- crossfit (9)
- encryption (9)
- eugene (9)
- flynn effect (9)
- james salter (9)
- simulation (9)
- tail risk (9)
- turing test (9)
- alan turing (8)
- alpha (8)
- ashkenazim (8)
- data mining (8)
- determinism (8)
- environmentalism (8)
- games (8)
- keynes (8)
- manhattan (8)
- new york times (8)
- pca (8)
- philip k. dick (8)
- qcd (8)
- real estate (8)
- robot genius (8)
- success (8)
- usain bolt (8)
- Iran (7)
- aig (7)
- basketball (7)
- free will (7)
- fx (7)
- game theory (7)
- hugh everett (7)
- inequality (7)
- information theory (7)
- iraq war (7)
- markets (7)
- paris (7)
- patents (7)
- poker (7)
- teaching (7)
- vietnam war (7)
- volatility (7)
- anthropic principle (6)
- bayes (6)
- class (6)
- drones (6)
- econtalk (6)
- empire (6)
- global warming (6)
- godel (6)
- intellectual property (6)
- nassim taleb (6)
- noam chomsky (6)
- prostitution (6)
- rationality (6)
- academia sinica (5)
- bobby fischer (5)
- demographics (5)
- fake alpha (5)
- kasparov (5)
- luck (5)
- nonlinearity (5)
- perimeter institute (5)
- renaissance technologies (5)
- sad but true (5)
- software development (5)
- solar energy (5)
- warren buffet (5)
- 100m (4)
- Poincare (4)
- assortative mating (4)
- bill gates (4)
- borges (4)
- cambridge uk (4)
- censorship (4)
- charles darwin (4)
- computers (4)
- creativity (4)
- hormones (4)
- humor (4)
- judo (4)
- kerviel (4)
- microsoft (4)
- mixed martial arts (4)
- monsters (4)
- moore's law (4)
- soros (4)
- supercomputers (4)
- trento (4)
- 200m (3)
- babies (3)
- brain drain (3)
- charlie munger (3)
- cheng ting hsu (3)
- chet baker (3)
- correlation (3)
- ecosystems (3)
- equity risk premium (3)
- facebook (3)
- fannie (3)
- feminism (3)
- fst (3)
- intellectual ventures (3)
- jim simons (3)
- language (3)
- lee kwan yew (3)
- lewontin fallacy (3)
- lhc (3)
- magic (3)
- michael lewis (3)
- mit (3)
- nathan myhrvold (3)
- neal stephenson (3)
- olympiads (3)
- path integrals (3)
- risk preference (3)
- search (3)
- sec (3)
- sivs (3)
- society generale (3)
- systemic risk (3)
- thailand (3)
- twitter (3)
- alibaba (2)
- bear stearns (2)
- bruce springsteen (2)
- charles babbage (2)
- cloning (2)
- david mamet (2)
- digital books (2)
- donald mackenzie (2)
- drugs (2)
- dune (2)
- exchange rates (2)
- frauds (2)
- freddie (2)
- gaussian copula (2)
- heinlein (2)
- industrial revolution (2)
- james watson (2)
- ltcm (2)
- mating (2)
- mba (2)
- mccain (2)
- monkeys (2)
- national character (2)
- nicholas metropolis (2)
- no holds barred (2)
- offices (2)
- oligarchs (2)
- palin (2)
- population structure (2)
- prisoner's dilemma (2)
- singapore (2)
- skidelsky (2)
- socgen (2)
- sprints (2)
- star wars (2)
- ussr (2)
- variance (2)
- virtual reality (2)
- war nerd (2)
- abx (1)
- anathem (1)
- andrew lo (1)
- antikythera mechanism (1)
- athens (1)
- atlas shrugged (1)
- ayn rand (1)
- bay area (1)
- beats (1)
- book search (1)
- bunnie huang (1)
- car dealers (1)
- carlos slim (1)
- catastrophe bonds (1)
- cdos (1)
- ces 2008 (1)
- chance (1)
- children (1)
- cochran-harpending (1)
- cpi (1)
- david x. li (1)
- dick cavett (1)
- dolomites (1)
- eharmony (1)
- eliot spitzer (1)
- escorts (1)
- faces (1)
- fads (1)
- favorite posts (1)
- fiber optic cable (1)
- francis crick (1)
- gary brecher (1)
- gizmos (1)
- greece (1)
- greenspan (1)
- hypocrisy (1)
- igon value (1)
- iit (1)
- inflation (1)
- information asymmetry (1)
- iphone (1)
- jack kerouac (1)
- jaynes (1)
- jazz (1)
- jfk (1)
- john dolan (1)
- john kerry (1)
- john paulson (1)
- john searle (1)
- john tierney (1)
- jonathan littell (1)
- las vegas (1)
- lawyers (1)
- lehman auction (1)
- les bienveillantes (1)
- lowell wood (1)
- lse (1)
- machine (1)
- mcgeorge bundy (1)
- mexico (1)
- michael jackson (1)
- mickey rourke (1)
- migration (1)
- money:tech (1)
- myron scholes (1)
- netwon institute (1)
- networks (1)
- newton institute (1)
- nfl (1)
- oliver stone (1)
- phil gramm (1)
- philanthropy (1)
- philip greenspun (1)
- portfolio theory (1)
- power laws (1)
- pyschology (1)
- randomness (1)
- recession (1)
- sales (1)
- skype (1)
- standard deviation (1)
- starship troopers (1)
- students today (1)
- teleportation (1)
- tierney lab blog (1)
- tomonaga (1)
- tyler cowen (1)
- venice (1)
- violence (1)
- virtual meetings (1)
- wealth effect (1)



