Showing posts with label godel. Show all posts
Showing posts with label godel. Show all posts

Monday, June 24, 2019

Ulam on von Neumann, Godel, and Einstein


Ulam expresses so much in a few sentences! From his memoir, Adventures of a Mathematician. Above: Einstein and Godel. Bottom: von Neumann, Feynman, Ulam.
When it came to other scientists, the person for whom he [vN] had a deep admiration was Kurt Gödel. This was mingled with a feeling of disappointment at not having himself thought of "undecidability." For years Gödel was not a professor at Princeton, merely a visiting fellow, I think it was called. Apparently there was someone on the faculty who was against him and managed to prevent his promotion to a professorship. Johnny would say to me, "How can any of us be called professor when Gödel is not?" ...

As for Gödel, he valued Johnny very highly and was much interested in his views. I believe knowing the importance of his own discovery did not prevent Gödel from a gnawing uncertainty that maybe all he had discovered was another paradox à la Burali Forte or Russell. But it is much, much more. It is a revolutionary discovery which changed both the philosophical and the technical aspects of mathematics.

When we talked about Einstein, Johnny would express the usual admiration for his epochal discoveries which had come to him so effortlessly, for the improbable luck of his formulations, and for his four papers on relativity, on the Brownian motion, and on the photo-electric quantum effect. How implausible it is that the velocity of light should be the same emanating from a moving object, whether it is coming toward you or whether it is receding. But his admiration seemed mixed with some reservations, as if he thought, "Well, here he is, so very great," yet knowing his limitations. He was surprised at Einstein's attitude in his debates with Niels Bohr—at his qualms about quantum theory in general. My own feeling has always been that the last word has not been said and that a new "super quantum theory" might reconcile the different premises.

Tuesday, July 17, 2018

ICML notes

It's never been a better time to work on AI/ML. Vast resources are being deployed in this direction, by corporations and governments alike. In addition to the marvelous practical applications in development, a theoretical understanding of Deep Learning may emerge in the next few years.

The notes below are to keep track of some interesting things I encountered at the meeting.

Some ML learning resources:

Metacademy
Depth First study of AlphaGo


I heard a more polished version of this talk by Elad at the Theory of Deep Learning workshop. He is trying to connect results in sparse learning (e.g., performance guarantees for L1 or threshold algos) to Deep Learning. (Video is from UCLA IPAM.)



It may turn out that the problems on which DL works well are precisely those in which the training data (and underlying generative processes) have a hierarchical structure which is sparse, level by level. Layered networks perform a kind of coarse graining (renormalization group flow): first layers filter by feature, subsequent layers by combinations of features, etc. But the whole thing can be understood as products of sparse filters, and the performance under training is described by sparse performance guarantees (ReLU = thresholded penalization?). Given the inherent locality of physics (atoms, molecules, cells, tissue; atoms, words, sentences, ...) it is not surprising that natural phenomena generate data with this kind of hierarchical structure.


Off-topic: At dinner with one of my former students and his colleague (both researchers at an AI lab in Germany), the subject of Finitism came up due to a throwaway remark about the Continuum Hypothesis.

Wikipedia
Horizons of Truth
Chaitin on Physics and Mathematics

David Deutsch:
The reason why we find it possible to construct, say, electronic calculators, and indeed why we can perform mental arithmetic, cannot be found in mathematics or logic. The reason is that the laws of physics "happen" to permit the existence of physical models for the operations of arithmetic such as addition, subtraction and multiplication.
My perspective: We experience the physical world directly, so the highest confidence belief we have is in its reality. Mathematics is an invention of our brains, and cannot help but be inspired by the objects we find in the physical world. Our idealizations (such as "infinity") may or may not be well-founded. In fact, mathematics with infinity included may be very sick, as evidenced by Godel's results, or paradoxes in set theory. There is no reason that infinity is needed (as far as we know) to do physics. It is entirely possible that there are only a (large but) finite number of degrees of freedom in the physical universe.

Paul Cohen:
I will ascribe to Skolem a view, not explicitly stated by him, that there is a reality to mathematics, but axioms cannot describe it. Indeed one goes further and says that there is no reason to think that any axiom system can adequately describe it.
This "it" (mathematics) that Cohen describes may be the set of idealizations constructed by our brains extrapolating from physical reality. But there is no guarantee that these idealizations have a strong kind of internal consistency and indeed they cannot be adequately described by any axiom system.

Saturday, July 05, 2014

Physics and the Horizons of Truth


I came across a PDF version of this book online. It contains a number of fine essays, including the ones excerpted from below. A recurring question concerning Godel's incompleteness results is whether they impact "interesting" mathematical questions.
CHAPTER 21 The Godel Phenomenon in Mathematics: A Modern View: ... Hilbert believed that all mathematical truths are knowable, and he set the threshold for mathematical knowledge at the ability to devise a “mechanical procedure.” This dream was shattered by Godel and Turing. Godel’s incompleteness theorem exhibited true statements that can never be proved. Turing formalized Hilbert’s notion of computation and of finite algorithms (thereby initiating the computer revolution) and proved that some problems are undecidable – they have no such algorithms.

Though the first examples of such unknowables seemed somewhat unnatural, more and more natural examples of unprovable or undecidable problems were found in different areas of mathematics. The independence of the continuum hypothesis and the undecidability of Diophantine equations are famous early examples. This became known as the Godel phenomenon, and its effect on the practice of mathematics has been debated since. Many argued that though some of the inaccessible truths above are natural, they are far from what is really of interest to most working mathematicians. Indeed, it would seem that in the seventy-five years since the incompleteness theo- rem, mathematics has continued thriving, with remarkable achievements such as the recent settlement of Fermat’s last “theorem” by Wiles and the Poincare conjecture by Perelman. Are there interesting mathematical truths that are unknowable?

The main point of this chapter is that when knowability is interpreted by modern standards, namely, via computational complexity, the Godel phenomenon is very much with us. We argue that to understand a mathematical structure, having a decision pro- cedure is but a first approximation; a real understanding requires an efficient algorithm. Remarkably, Godel was the first to propose this modern view in a letter to von Neumann in 1956, which was discovered only in the 1990s.

Meanwhile, from the mid-1960s on, the field of theoretical computer science has made formal Godel’s challenge and has created a theory that enables quantification of the difficulty of computational problems. In particular, a reasonable way to capture knowable problems (which we can efficiently solve) is the class P, and a reasonable way to capture interesting problems (which we would like to solve) is the class NP. Moreover, assuming the widely believed P ̸= NP conjecture, the class NP -complete captures interesting unknowable problems. ...
This volume also includes Paul Cohen's essay (chapter 19) on his work on the Continuum Hypothesis and his interactions with Godel. See also Horizons of Truth.
Cohen: ... I still had a feeling of skepticism about Godel's work, but skepticism mixed with awe and admiration.

I can say my feeling was roughly this: How can someone thinking about logic in almost philosophical terms discover a result that had implications for Diophantine equations? ... I closed the book and tried to rediscover the proof, which I still feel is the best way to understand things. I totally capitulated. The Incompleteness Theorem was true, and Godel was far superior to me in understanding the nature of mathematics.

Although the proof was basically simple, when stripped to its essentials I felt that its discoverer was above me and other mere mortals in his ability to understand what mathematics -- and even human thought, for that matter -- really was. From that moment on, my regard for Godel was so high that I almost felt it would be beyond my wildest dreams to meet him and discover for myself how he thought about mathematics and the fount from which his deep intuition flowed. I could imagine myself as a clever mathematician solving difficult problems, but how could I emulate a result of the magnitude of the Incompleteness Theorem? There it stood, in splendid isolation and majesty, not allowing any kind of completion or addition because it answered the basic questions with such finality.
My recent interest in this topic parallels a remark by David Deutsch
The reason why we find it possible to construct, say, electronic calculators, and indeed why we can perform mental arithmetic, cannot be found in mathematics or logic. The reason is that the laws of physics "happen" to permit the existence of physical models for the operations of arithmetic such as addition, subtraction and multiplication.
that suggests the primacy of physical reality over mathematics (usually the opposite assumption is made!) -- the parts of mathematics which are simply models or abstractions of "real" physical things are most likely to be free of contradiction or misleading intuition. Aspects of mathematics which have no physical analog (e.g., infinite sets) are prone to problems in formalization or mechanization. Physics (models which can be compared to experimental observation; actual "effective procedures") does not ever require infinity, although it may be of some conceptual convenience. Hence one suspects, along the lines above, that mathematics without something like the "axiom of infinity" might be well-defined. Is there some sort of finiteness restriction (e.g., upper bound on Godel number) that evades Godel's theorem? If one only asks arithmetical questions about numbers below some upper bound, can't one avoid undecidability?

Sunday, June 09, 2013

Horizons of truth

I'm putting these links and quotes here for my future reference. Sorry if this post seems disjointed and confusing. The Kanamori link below is a nice historical description of Paul Cohen and his work on the Continuum Hypothesis. Amusingly, Cohen once wrote
[Cohen:] ... Even if the formalist position is adopted, in actual thinking about mathematics one can have no intuition unless one assumes that models exist and that the structures are real.

So, let me say that I will ascribe to Skolem a view, not explicitly stated by him, that there is a reality to mathematics, but axioms cannot describe it. Indeed one goes further and says that there is no reason to think that any axiom system can adequately describe it.
[Kanamori:] Cohen then returned to the bedrock of number theory and gave as an example the twin primes conjecture as beyond the reach of proof. “Is it not very likely that, simply as a random set of numbers, the primes do satisfy the hypothesis, but there is no logical law that implies this?” [But weak twin primes has been proved!]

Cohen and Set Theory (Kanamori)
Skolem and pessimism about proof in mathematics (Cohen)
The discovery of forcing (Cohen)

Implications for Diophantine equations (Matiyasevich).

Cohen on discovering Godel's Incompleteness Theorem as a graduate student. (From My interaction with Kurt Godel, reprinted in Cohen's Set Theory and the Continuum Hypothesis.)
... I still had a feeling of skepticism about Godel's work, but skepticism mixed with awe and admiration.

I can say my feeling was roughly this: How can someone thinking about logic in almost philosophical terms discover a result that had implications for Diophantine equations? ... I closed the book and tried to rediscover the proof, which I still feel is the best way to understand things. I totally capitulated. The Incompleteness Theorem was true, and Godel was far superior to me in understanding the nature of mathematics.

Although the proof was basically simple, when stripped to its essentials I felt that its discoverer was above me and other mere mortals in his ability to understand what mathematics -- and even human thought, for that matter -- really was. From that moment on, my regard for Godel was so high that I almost felt it would be beyond my wildest dreams to meet him and discover for myself how he thought about mathematics and the fount from which his deep intuition flowed. I could imagine myself as a clever mathematician solving difficult problems, but how could I emulate a result of the magnitude of the Incompleteness Theorem? There it stood, in splendid isolation and majesty, not allowing any kind of completion or addition because it answered the basic questions with such finality.
What is my attitude toward foundational work in mathematics, logic and set theory? the nature of proof and rigor? See this earlier post on the relation between physics and mathematics (GC = Gregory Chaitin).
... Let's recall David Deutsch's 1982 statement:

The reason why we find it possible to construct, say, electronic calculators, and indeed why we can perform mental arithmetic, cannot be found in mathematics or logic. The reason is that the laws of physics "happen" to permit the existence of physical models for the operations of arithmetic such as addition, subtraction and multiplication.

Does this apply to mathematics too? ...

GC: But mathematicians shouldn't think they can replace physicists: There's a beautiful little 1943 book on Experiment and Theory in Physics by Max Born where he decries the view that mathematics can enable us to discover how the world works by pure thought, without substantial input from experiment.

CC: What about set theory? Does this have anything to do with physics?

GC: I think so. I think it's reasonable to demand that set theory has to apply to our universe. In my opinion it's a fantasy to talk about infinities or Cantorian cardinals that are larger than what you have in your physical universe. And what's our universe actually like?

a finite universe?
discrete but infinite universe (ℵ0)?
universe with continuity and real numbers (ℵ1)?
universe with higher-order cardinals (≥ ℵ2)?
Does it really make sense to postulate higher-order infinities than you have in your physical universe? Does it make sense to believe in real numbers if our world is actually discrete? Does it make sense to believe in the set {0, 1, 2, ...} of all natural numbers if our world is really finite?

CC: Of course, we may never know if our universe is finite or not. And we may never know if at the bottom level the physical universe is discrete or continuous...

GC: Amazingly enough, Cris, there is some evidence that the world may be discrete, and even, in a way, two-dimensional. There's something called the holographic principle, and something else called the Bekenstein bound. These ideas come from trying to understand black holes using thermodynamics. The tentative conclusion is that any physical system only contains a finite number of bits of information, which in fact grows as the surface area of the physical system, not as the volume of the system as you might expect, whence the term ``holographic.'' ...

CC: We seem to have concluded that mathematics depends on physics, haven't we? But mathematics is the main tool to understand physics. Don't we have some kind of circularity?

GC: Yeah, that sounds very bad! But if math is actually, as Imre Lakatos termed it, quasi-empirical, then that's exactly what you'd expect. And as you know Cris, for years I've been arguing that information-theoretic incompleteness results inevitably push us in the direction of a quasi-empirical view of math, one in which math and physics are different, but maybe not as different as most people think. As Vladimir Arnold provocatively puts it, math and physics are the same, except that in math the experiments are a lot cheaper!


CC: In a sense the relationship between mathematics and physics looks similar to the relationship between meta-mathematics and mathematics. The incompleteness theorem puts a limit on what we can do in axiomatic mathematics, but its proof is built using a substantial amount of mathematics!

GC: What do you mean, Cris?

CC: Because mathematics is incomplete, but incompleteness is proved within mathematics, meta-mathematics is itself incomplete, so we have a kind of unending uncertainty in mathematics. This seems to be replicated in physics as well: Our understanding of physics comes through mathematics, but mathematics is as certain (or uncertain) as physics, because it depends on the physical laws of the universe where mathematics is done, so again we seem to have unending uncertainty. Furthermore, because physics is uncertain, you can derive a new form of uncertainty principle for mathematics itself...

GC: Well, I don't believe in absolute truth, in total certainty. Maybe it exists in the Platonic world of ideas, or in the mind of God---I guess that's why I became a mathematician---but I don't think it exists down here on Earth where we are. Ultimately, I think that that's what incompleteness forces us to do, to accept a spectrum, a continuum, of possible truth values, not just black and white absolute truth.

In other words, I think incompleteness means that we have to also accept heuristic proofs, the kinds of proofs that George Pólya liked, arguments that are rather convincing even if they are not totally rigorous, the kinds of proofs that physicists like. Jonathan Borwein and David Bailey talk a lot about the advantages of that kind of approach in their two-volume work on experimental mathematics. Sometimes the evidence is pretty convincing even if it's not a conventional proof. For example, if two real numbers calculated for thousands of digits look exactly alike...

CC: It's true, Greg, that even now, a century after Gödel's birth, incompleteness remains controversial. I just discovered two recent essays by important mathematicians, Paul Cohen and Jack Schwartz.* Have you seen these essays?

*P. J. Cohen, ``Skolem and pessimism about proof in mathematics,'' Phil. Trans. R. Soc. A (2005) 363, 2407-2418; J. T. Schwartz, ``Do the integers exist? The unknowability of arithmetic consistency,'' Comm. Pure & Appl. Math. (2005) LVIII, 1280-1286.

GC: No.

CC: Listen to what Cohen has to say:

``I believe that the vast majority of statements about the integers are totally and permanently beyond proof in any reasonable system.''

And according to Schwartz,

``truly comprehensive search for an inconsistency in any set of axioms is impossible.''

GC: Well, my current model of mathematics is that it's a living organism that develops and evolves, forever. That's a long way from the traditional Platonic view that mathematical truth is perfect, static and eternal.

CC: What about Einstein's famous statement that

``Insofar as mathematical theorems refer to reality, they are not sure, and insofar as they are sure, they do not refer to reality.''

Still valid?

GC: Or, slightly misquoting Pablo Picasso, theories are lies that help us to see the truth!

Wednesday, November 23, 2011

Godel's proof, compressed

I found this here, but it is originally due to Raymond Smullyan. I first learned about Godel's theorem when I read Douglas Hofstader's book Godel, Escher, Bach in high school. I still remember lugging the thick volume around in my backpack, and working through the early chapters on predicate logic. This treatment is much more compact! :^)

We have some sort of machine that prints out statements in some sort of language. It needn't be a statement-printing machine exactly; it could be some sort of technique for taking statements and deciding if they are true. But let's think of it as a machine that prints out statements.

In particular, some of the statements that the machine might (or might not) print look like these:

P*x (which means that the machine will print x)
NP*x (which means that the machine will never print x)
PR*x (which means that the machine will print xx)
NPR*x (which means that the machine will never print xx)

For example, NPR*FOO means that the machine will never print FOOFOO. NP*FOOFOO means the same thing. So far, so good.

Now, let's consider the statement NPR*NPR*. This statement asserts that the machine will never print NPR*NPR*.

Either the machine prints NPR*NPR*, or it never prints NPR*NPR*.

If the machine prints NPR*NPR*, it has printed a false statement. But if the machine never prints NPR*NPR*, then NPR*NPR* is a true statement that the machine never prints.

So either the machine sometimes prints false statements, or there are true statements that it never prints.

So any machine that prints only true statements must fail to print some true statements.

Or conversely, any machine that prints every possible true statement must print some false statements too.

Saturday, October 11, 2008

Godel's theorems and Oliver Stone

Two audio suggestions to take your mind off the financial crisis -- at least until Asian markets open on Sunday :-)

An excellent 40 minute discussion of Godel's incompleteness theorems with two mathematicians (one a logician) and a theoretical physicist. If you know a bit about the subject the first 15 minutes or so are quite slow, but the last 20 minutes are well worth listening to. One of the discussants notes that the axioms of Euclidean geometry are not rich enough to be self-referential (unlike those of arithmetic), hence do not suffer from incompleteness. (Geometry is axiomatizable but not adequate to encode the syntax of proofs.)

Leonard Lopate interview (30 min) with Oliver Stone. Stone directed Wall Street, one of my favorite movies. (Too bad he's not doing the sequel Money Never Sleeps.) Few people know he was a classmate of George W. Bush's at Yale. The contrast could not be greater: Stone volunteered for combat duty in Vietnam, was wounded twice and won the Bronze heart and Purple Star. He also wrote the screenplays for Midnight Express (for which he won an Oscar) and Scarface ("say hello to my little friend!" :-). Stone's biopic of Bush, W, was done in collaboration with Stanley Weiser, his co-writer from Wall Street, and will open next week. At one point in the interview Stone comments that he doubts Greenspan, Paulson or any of the other leaders really understands what is happening in this crisis, due to the complexities of derivatives.

Blog Archive

Labels