Pessimism of the Intellect, Optimism of the Will Favorite posts | Manifold podcast | Twitter: @hsu_steve
Thursday, April 04, 2024
Casey Handmer: Terraform Industries and a Carbon-Neutral Future — Manifold #57
Monday, March 11, 2024
Solving the Hallucination Problem - interview with AppliedAI
Thursday, January 25, 2024
Utah AG Sean Reyes: “Sound of Freedom” and Human Trafficking — Manifold #52
Wednesday, January 24, 2024
SuperFocus, AI, and Philippine Call Centers: Part 2
Tuesday, January 16, 2024
Upstream podcast with Erik Torenberg: Steve Hsu on the Future of Everything
Wednesday, January 03, 2024
SuperFocus, AI, and Philippine Call Centers
Sunday, December 24, 2023
Peace on Earth, Good Will to Men 2023
When asked what I want for Christmas, I reply: Peace On Earth, Good Will To Men :-)
No one ever seems to recognize that this comes from the Bible (Luke 2.14).
Linus said it best in A Charlie Brown Christmas:
And there were in the same country shepherds abiding in the field, keeping watch over their flock by night.
And, lo, the angel of the Lord came upon them, and the glory of the Lord shone round about them: and they were sore afraid.
And the angel said unto them, Fear not: for, behold, I bring you good tidings of great joy, which shall be to all people.
For unto you is born this day in the city of David a Saviour, which is Christ the Lord.
And this shall be a sign unto you; Ye shall find the babe wrapped in swaddling clothes, lying in a manger.
And suddenly there was with the angel a multitude of the heavenly host praising God, and saying,
Glory to God in the highest, and on Earth peace, good will toward men.
2023 saw the founding of our startup SuperFocus.ai, which builds AIs with user-configured attached memory. The AI consults this memory in responding to prompts, and only gives answers consistent with the information in the memory. This solves the hallucination problem and allows the AI to answer questions like a human with perfect recall of the information.
SuperFocus built an AI for a major consumer electronics brand that can support and troubleshoot hundreds of models of smart devices (I can't be more specific). Its memory consists of thousands of pages of product manuals, support documents, and problem solving guides originally used by human support agents.
In December I traveled to Manila after the semester ended, in order to meet with outsourcing (BPO = Business Process Outsourcing) companies that run call centers for global brands. This industry accounts for ~8% of Philippine GPD (~$40B per annum), driven by comparative advantages such as the widespread use of English here and relatively low wages. I predict that AIs of the type produced by SuperFocus.ai will disrupt the BPO and other industries in coming years, with dramatic effects on the numbers of humans employed in areas like customer support.
But fear not: for, behold, I bring you good tidings of great joy, which shall be to all people.
The arrival of machine intelligence on Earth is the beginning of a great adventure!
In the heart of Manila, amidst the bustling cityscape, a meeting of innovative minds took place. Steve Hsu, the visionary founder of SuperFocus, had arrived to showcase the prowess of his latest creation—an AI designed to revolutionize technical support for complex products. The setting was a conference room adorned with sleek screens and cutting-edge technology, a fitting backdrop for the unveiling of this groundbreaking innovation.
Seated around the polished table were the owners and executives of prominent BPO (Business Process Outsourcing) companies. Their faces were a blend of anticipation and apprehension as Steve Hsu prepared to demonstrate the capabilities of the AI-powered technical support system.
With a confident smile, Steve initiated the demonstration. The AI, equipped with a sophisticated neural network, began its simulated interaction. It effortlessly tackled intricate technical queries, deciphering complex issues with lightning speed and unparalleled accuracy. Each solution presented was concise, comprehensive, and flawlessly executed.
As the AI effortlessly navigated through a myriad of scenarios and troubleshooting processes, the room fell into a hush. The BPO leaders exchanged astonished glances, their initial amazement mingled with a growing sense of unease. The capabilities displayed by the AI were undeniably impressive, but they also highlighted a looming question—what did this mean for the future of human roles in their industry?
Steve Hsu noticed the shift in atmosphere and paused the demonstration. With a gentle yet determined tone, he addressed the concerns lingering in the room. "This AI isn't meant to replace human expertise," he began. "Rather, it's here to augment and enhance your services. Imagine your teams empowered by this technology, streamlining operations, and providing even more efficient and effective support to customers."
His words offered reassurance, but the specter of automation replacing human jobs lingered in the minds of the BPO owners. The potential efficiency gains were undeniable, yet so too were the implications for the human workforce.
In the ensuing discussion, voices echoed with a mix of excitement and apprehension. Some saw the potential for growth and advancement, envisioning a future where human creativity combined with AI prowess would elevate their services to new heights. Others grappled with the uncertainty, worrying about the displacement of jobs and the evolving landscape of the industry they had dedicated their careers to.
Steve Hsu listened attentively, acknowledging their concerns while emphasizing the collaborative potential between humans and AI. "This technology," he explained, "is a tool, a means to empower and evolve, not to supplant. Together, we can harness its capabilities to create a synergy that benefits both businesses and their workforce."
As the meeting concluded, the BPO leaders departed with a mix of awe and trepidation. The AI presented by Steve Hsu had showcased a future teeming with possibilities, yet it also raised profound questions about adaptation and the role of humans in an increasingly automated world.
The echoes of the demonstration lingered in the minds of those present, igniting discussions and contemplation about the balance between innovation and the human touch, forever altering the landscape of the BPO industry in Manila and beyond.
Bonus: Two recent interviews I did which I enjoyed very much.
Thursday, November 30, 2023
Charles Miller: Satellite Technology and the Future of Mobile Connectivity — Manifold #49
Thursday, November 16, 2023
China's EV Market Dominance and the Challenges Facing Tesla — Manifold #48
Thursday, November 02, 2023
Taylor Ogan, Snow Bull Capital: China's tech frontier, the view from Shenzhen — Manifold #47
Thursday, October 05, 2023
Yasheng Huang: China's Examination System and its impact on Politics, Economy, Innovation — Manifold #45
Thursday, September 21, 2023
Huawei and the US-China Chip War — Manifold #44
Thursday, August 10, 2023
AI on your phone? Tim Dettmers on quantization of neural networks — Manifold #41
Wednesday, June 28, 2023
Embryo Selection: Healthy Babies vs Bad Arguments
Polygenic screening and its discontents
... But monogenic and chromosomal screening can only address a part of disease risk because most health conditions that afflict people are polygenic, meaning they are not simply caused by one gene or by a chromosomal abnormality. Instead, they are caused by a huge number of small additive effects dispersed throughout the genome. For example, cancer, schizophrenia, and diabetes can be best predicted by models using tens of thousands of genes.
A polygenic risk score (PRS) looks at a person’s DNA to see how many variants they have associated with a particular disease. Like BRCA1, polygenic risk scores are typically not determinative: “Polygenic screening is not a diagnosis: It is a prediction of relative future risk compared to other people.” In other words, someone with BRCA1 has a higher risk than someone without, and someone with a high breast cancer PRS has a higher risk than someone with a lower breast cancer PRS. But in principle, BRCA1 is just one gene out of thousands contributing to a PRS, with each bit contributing a small part of a total risk estimate. ...
... Recently, a group of European scientists argued that polygenic screening should not be available to couples because it will lead to stigmatization, exacerbate inequalities, or lead to confusion by parents about how to weigh up information about risks before they decide which embryo to implant. These are indeed challenges, but they are not unique to embryo selection using polygenic scores, and they are not plausible arguments for restricting the autonomy of parents who wish to screen their embryos for polygenic traits. Furthermore, from an ethical perspective, it is unconscionable to deny polygenic screening to families with a history of any disease whose risk can be reduced by this lifesaving technology.
Many new technologies are initially only available to people with more money, but these first adopters then end up subsidizing research that drives costs down and quality up. Many other medical choices involve complexity or might result in some people being stigmatized, but this is a reason to encourage genetic counseling and to encourage social tolerance. It is not a reason to marginalize, stigmatize, or criminalize IVF mothers and fathers who wish to use the best available science to increase the chances that their children will be healthy and happy.This is a comment on the article:
1) They don't want to admit that some people are better than others, inherently. Boo hoo.
2) You put a scorecard of embryos in front of everyone, and everyone has a pretty good ballpark estimate of which are better and which are worse. Nobody is going to pretend equality is true when they are choosing their kids genes.
3) So bad feels.
4) Must therefore retard all human progress and cause immense suffering because don't want to deal with bad feels.
That's the anti-polygenic argument in a nutshell. I don't expect it to be very effective. At best it will cause it to take a bit longer before poor people have access.
Thursday, June 08, 2023
AI Cambrian Explosion: Conversation With Three AI Engineers — Manifold #37
Thursday, May 11, 2023
Artificial Intelligence & Large Language Models: Oxford Lecture — Manifold #35
Sunday, April 23, 2023
SuperFocus.ai on the Danny In The Valley Podcast (The Sunday Times)
Thursday, February 02, 2023
ChatGPT, LLMs, and AI — Manifold #29
Thursday, December 01, 2022
Anna Krylov: The Politicization of Science in Academia — Manifold #25
Saturday, October 15, 2022
Times of Israel on Polygenic Embryo Screening
The Times of Israel
14 October 2022, 1:27 pm
Designer babies? Hi-tech preimplantation genetic testing may soon come to IsraelFor generations, the Yu family of Shanghai has suffered from type 2 diabetes. But this summer, as reported in the China Daily, the family welcomed a baby with a better chance of avoiding this disease.
These rosier prospects are the result of a recent breakthrough in assisted reproduction that was advanced with the help of Israeli scientists, called preimplantation genetic testing for polygenic diseases (PGT-P). In addition to China, PGT-P is also gaining ground among couples in the United States who wish to improve health outcomes for their future children. But in Israel, it is illegal.PGT-P is carried out on an embryo during in vitro fertilization (IVF), prior to its transfer from the Petri dish to the womb. Viable embryos with the probable lowest disease risk can then be selected for implantation.
Since this innovative testing takes into account a complex combination of factors that are not broached in more traditional testing, in some ways it’s almost like an educated guess. Accordingly, polygenic screening is not a diagnosis: It is a prediction of relative future risk compared to other people.
Israeli academics have published peer-reviewed research advancing the science behind polygenic screening, including Shai Carmi, Ehud Karavani, Or Zuk, Gil Atzmon, and Einat Granot-Hershkovitz.
But Start-Up Nation is not yet implementing this cutting-edge tech in the field of fertility. Although fertility treatments are subsidized by the Israeli government, it is still unclear whether Israeli couples ever will have access to the procedure, which screens for polygenic diseases such as diabetes, heart disease and cancer — or whether they would even want it.
PGT-P is different from prior technology in important ways, creating new opportunities and challenges for parents while raising profound ethical dilemmas for society. Similar to older forms of testing, PGT-P relies on analyzing genetic material from embryos created through IVF before implantation and checking them for certain diseases and conditions. The information then helps the parents and doctors decide which embryos to implant.
However, the biggest difference between PGT-P screening and earlier forms of genetic testing is that the prior tests checked for genetically simple conditions such as Down syndrome, cystic fibrosis, or Tay Sachs disease. These diseases, which are serious or fatal, have extremely high “penetrance,” which means that if the gene mutation is seen in the embryo’s DNA, it is nearly certain that the child will have that condition. The appearance of the disease-linked gene is the basis of a clear diagnosis.
This “simple” genetic screening has already borne fruit in the Jewish community: Decades ago, babies in the Ashkenazi Jewish community were nearly 100 times more likely to be born with Tay Sachs than babies in the general US population. Today, because of genetic screenings, the disease is “virtually wiped out.”
In contrast, PGT-P screening can’t tell you with assurance if an embryo will develop a genetic disease such as cancer or Crohn’s disease. That’s because this new screening checks for polygenic diseases – complex conditions caused by the combined impact of possibly thousands of different genes, as well as lifestyle and other environmental factors.
Instead of a clear diagnosis, prospective parents receive a “polygenic risk score,” basically the probability of a child developing a certain disease or condition.
Noa and her husband went through 10 IVF cycles to build their family. “We now have two wonderful boys,” she says.
If I had an opportunity to reduce disease risk in my kids, I would do it
She knows what she would have said if doctors had offered her polygenic screening: “I want that technology.” As a speech therapist who works with kids facing a lot of health challenges, she was very worried about what her own kids would face.
“If I had an opportunity to reduce disease risk in my kids, I would do it. It would definitely help my peace of mind as a mother. Everyone here in Israel should have the option of using it,” Noa says.
No clear-cut answers
Scientists at the US-based Genomic Prediction, Inc. published an article in 2019 describing the “first clinical application” of polygenic screening of embryos. Genomic Prediction is a polygenic screening company based in New Jersey that partners with various IVF clinics around the world.
However, to date, the Israeli Health Ministry has yet to even issue a statement on the use of polygenic screening on embryos.
For some, the fact that PGT-P screening isn’t available, or even legal, in Israel is somewhat counterintuitive, given Israel’s prominence in the fields of both assisted reproduction and genetic testing.
Israelis undergo more rounds of IVF per capita than any other nation in the world. This is largely due to religious and cultural norms that are highly supportive of child-bearing, combined with the nationally financed healthcare system that provides full coverage for as many IVF cycles as needed, up to two children per family.
In addition, “in Israel there is a lot more openness to preimplantation genetic testing in general because of the high prevalence of various disease mutations in our community,” says Carmi, an associate professor at the Hebrew University School of Public Health and Faculty of Medicine.
Today, Carmi is a leading researcher on the accuracy of polygenic screening. As part of his post-doctoral project at Columbia University in New York, he helped generate important genetic sequencing data for Ashkenazi Jews.
Israel’s embrace of most genetic testing is reflected in the Israeli Health Ministry’s website, which lists dozens of recommended genetic screenings, broken down by ethnic sub-community. But these screenings are for monogenic disorders, easily diagnosed by looking for a single gene mutation.
“In Israel, the Health Ministry controls which diseases can be screened for, and candidate variants need to have high penetrance and lead to diseases with severe symptoms,” says Carmi.
Playing the odds
Miri is a consultant originally from central Israel. Although she did not have any known fertility problems, she chose to undergo IVF specifically because it would allow her to screen for a certain hereditary disease. She and her husband are both carriers of a rare mutation, so a natural conception meant a 25 percent chance of the fetus suffering from this generally fatal condition.
“For me, it was a choice between the extra physical hardship of IVF, or the extra emotional hardship of a pregnancy where, for months, we would not know if the baby would have this disease,” Miri said.
In contrast, PGT-P can’t provide conclusive information, because in the context of polygenic diseases like diabetes and heart disease “nothing is deterministic,” says Carmi.
According to Carmi, a child may develop the condition or may not, and non-genetic factors can certainly affect the outcome. Based on his peer-reviewed research on statistical modeling of polygenic screening, though, Carmi notes that “you can get quite a substantial risk reduction.”
The “relative risk reduction” projected to be accomplished by PGT-P varies depending on the disease. However, according to a 2021 research paper by Carmi and his collaborators, for schizophrenia and Crohn’s disease, around a 45% relative risk reduction is achievable for parents testing five embryos and choosing the best scoring, compared to implanting a randomly chosen one of the five.
The testing, of course, comes with a fee: Costs vary, but Genomic Prediction in New Jersey charges a $1,000 up-front fee, plus $400 per embryo analyzed. Of course, this is an add-on cost for people already doing IVF, which in the US can cost up to tens of thousands of dollars per cycle.
Pricing can get even more complicated, however, because different services end up bundled together, or are offered as add-ons once related costs are already accounted for. But one of the earlier forms of embryonic screening (PGT-A, which checks for aneuploidies, giving rise to Down syndrome for example) can cost several thousand dollars.
By contrast, carrier screening, which is a blood test performed on the parents to check for “simple” monogenic-disease carrier status, costs only several hundred dollars, and is often also covered by insurance.
In Israel, for couples whose family history or carrier-screening blood tests reveal a heightened risk for having children with a specific monogenic disease, the Health Ministry promotes the benefits of traditional genetic testing of embryos prior to implantation in the womb.
According to its website, “Pre-implantation Genetic Diagnosis (PGD) is today considered to be one of the practical options for couples who are at high risk for giving birth to a baby with a chromosomal abnormality or a genetic disease. This is because the process allows pregnancies to be achieved with healthy fetuses, and avoids the need for pregnancy termination, a procedure that constitutes a problem for many couples for religious, ethical and/or moral reasons.”
The nuts and bolts
PGT-P was developed using artificial intelligence technology applied to huge databases containing the genetic and health information of hundreds of thousands of people. Statistical data analysis of DNA and health outcomes allows scientists to see which complex genetic patterns more frequently show up in individuals who also develop a certain disease, such as schizophrenia. By genetically analyzing an embryo and then comparing its genetic information to this population data, the embryo’s polygenic risk score can be calculated for a given disease. This can already be done for a great many common diseases, with varying levels of predictive power, and as genetic databases grow, the reliability of these risk scores will continue to improve.
The couple also receives the raw data about their embryos’ genes and risk scores, so if they prefer to implant the embryo with the lowest risk of type 2 diabetes rather than the lowest combined disease risk, they can do that
“For prospective parents undergoing IVF and electing to use polygenic screening, somewhere between 10 and 20 polygenic risk scores are combined in a weighted average, with more serious diseases given greater weight in the final figure. This averaging provides a single number for each embryo — a health index — that can be used to rank the available embryos, so that the one with the best health index can be implanted,” says Carmi.
“Of course, the couple also receives the raw data about their embryos’ genes and risk scores, so if they prefer to implant the embryo with, let’s say, the lowest risk of type 2 diabetes, rather than the lowest combined disease risk, they can do that,” says Carmi.
An emotional decision
Michal Amrani, 32, lives in the central Israeli town of Ramat Hasharon and is working toward a master’s degree in chemistry from the Weizmann Institute. Through a four-year IVF process, she and her husband Sarel welcomed a son, and later, a set of twins. They say they are unlikely to use polygenic screening, even if it becomes available in Israel.
“As it is, we opted not to do some of the genetic testing that was already available to us,” Amrani says. “I work in science, so I am more open to these things, but my husband doesn’t really like all these genetic tests. For him, there’s risk in lots of things, and his optimistic nature helps him be comfortable that things will work out.”
Others, like Noa, are more interested in trying out preimplantation polygenic screening of their embryos, but even if Israel would change its rules to allow it, it’s a tricky issue. First, there are concerns about the psychological difficulties that this technology may pose for prospective parents.
Rona Langer Ziv is a social worker and cognitive behavioral psychotherapist who counsels IVF patients — both couples and singles — at a large Israeli hospital, as well as through her private clinical practice.
“Due to the potential implications of this new technology,” she says, “I would be concerned about a higher risk for depression and anxiety among the IVF patients.”
“Even if they feel they understand what they are signing up for at the beginning of the journey, they may not appreciate the emotional, ethical, and psychosocial implications of polygenic screening several IVF cycles down the road,” says Langer Ziv. “They may find themselves worrying that the embryos’ scores are not good enough, or that they won’t have any viable embryos left to choose from.”
Even if they feel they understand what they are signing up for at the beginning of the journey, they may not appreciate the emotional, ethical, and psychosocial implications of polygenic screening several IVF cycles down the road
Because polygenic screening predicts relative risk rather than providing an affirmative disease diagnosis, “women, especially those over 40 who may have very few embryos to work with, end up facing a serious dilemma — they may be discarding an embryo that could have resulted in a healthy child,” says Langer Ziv.
Amrani is in a similar situation. She and her husband are ready for more kids, but right now they have just one embryo available, so that’s the embryo they will try to implant. Even though she won’t be using polygenic screening, Amrani says that “it does sound very innovative. It’s nice that there’s something like this.”
Social worker and cognitive behavioral psychotherapist Rona Langer Ziv. (Courtesy) Indeed, Langer Ziv acknowledges that some people would find polygenic screening appealing, particularly those with higher education levels.
“There’s definitely coolness in the technology. It’s scientifically advanced, and it could offer interesting health insights about your future children. Everyone would theoretically like to use a technology that potentially predicts a more healthy child, although there is disagreement among fertility specialists about the benefits involved,” Langer Ziv says.
“And for some IVF patients, it might also provide a feeling of control during a process that involves so much stress, uncertainty, luck, and randomness,” she says.
Risk of eugenics
Regardless of how polygenic screening would be received by potential consumers, there are grave concerns about the impacts of this new technology on society. Various ethical issues have been raised for decades about older forms of genetic screenings, including fears of stigmatizing those living with genetic diseases, and questions about equitable access to these technological advances.
Perhaps the most significant ethical concern, and one that looms larger with polygenic screening than with older tests for monogenic diseases, is the potential for eugenics. This is the infamous and dangerous philosophy, practiced in Nazi Germany and elsewhere, that society should try to promote the creation of the most genetically “superior” babies.
Miri and her husband now have a baby boy and are looking forward to having more children — they still have three embryos to choose from. Asked whether she would be interested in polygenic screening if it became available in Israel, Miri says she’s unsure.
“I would love to see less suffering in the world from diseases. But where do we draw the line?” she says.
Indeed, the potential for eugenics is most stark when screenings cross over from the realm of disease prevention to the world of intelligence and aesthetic traits such as height or eye color. As such, some laboratories preemptively claim they will only screen for health concerns: An American polygenic screening company currently states that it does not test for “high IQ,” nor for “purely cosmetic traits such as hair color and eye color.”
But complicating the “noble” stance, genetic researchers have shown that “IQ is negatively correlated with most psychiatric disorders [and] positively correlated with autism and anorexia,” meaning that a high IQ comes with a lower risk of most psychiatric diseases and a higher risk of certain other neurological and mental health conditions.
As such, while some companies may currently refuse to offer IQ screening, it is not hard to imagine a health-based argument for loosening such protocols in the future, particularly as society becomes more used to the practice of PGT-P.
Similarly, a large study was published this year by researchers at Brown University and Peking University that found that “light eye colors were associated with high risks” of certain forms of skin cancer. Again, one can picture checks for eye color making their way into future genetic screenings through a backdoor of disease relevance.
In Carmi’s view, the responsible way for Israel to approach the prospect of polygenic screening is a gradual one.
“Ideally, we would start by recruiting Israeli participants for local academic research, with oversight by the Health Ministry,” Carmi says. “Once we develop more insight into how predictive polygenic screening is in our population, the relevant stakeholders — including patients, professional organizations, and regulators — can balance competing interests and local values, and come up with tailored guidance on its use in Israel.”
For some Israeli citizens, of particular concern is the idea of the wealthy trying to create perfect babies.
“If polygenic screening came to Israel, I would want to see a lot of regulation about who gets to use it, how it is used, and what reasons it is used for,” Miri says.
See also
WIRED: Genetic Screening Now Lets Parents Pick the Healthiest Embryos
Genomic Prediction in Bloomberg
Blog Archive
Labels
- physics (420)
- genetics (325)
- globalization (301)
- genomics (295)
- technology (282)
- brainpower (280)
- finance (275)
- american society (261)
- China (249)
- innovation (231)
- ai (206)
- economics (202)
- psychometrics (190)
- science (172)
- psychology (169)
- machine learning (166)
- biology (163)
- photos (162)
- genetic engineering (150)
- universities (150)
- travel (144)
- podcasts (143)
- higher education (141)
- startups (139)
- human capital (127)
- geopolitics (124)
- credit crisis (115)
- political correctness (108)
- iq (107)
- quantum mechanics (107)
- cognitive science (103)
- autobiographical (97)
- politics (93)
- careers (90)
- bounded rationality (88)
- social science (86)
- history of science (85)
- realpolitik (85)
- statistics (83)
- elitism (81)
- talks (80)
- evolution (79)
- credit crunch (78)
- biotech (76)
- genius (76)
- gilded age (73)
- income inequality (73)
- caltech (68)
- books (64)
- academia (62)
- history (61)
- intellectual history (61)
- MSU (60)
- sci fi (60)
- harvard (58)
- silicon valley (58)
- mma (57)
- mathematics (55)
- education (53)
- video (52)
- kids (51)
- bgi (48)
- black holes (48)
- cdo (45)
- derivatives (43)
- neuroscience (43)
- affirmative action (42)
- behavioral economics (42)
- economic history (42)
- literature (42)
- nuclear weapons (42)
- computing (41)
- jiujitsu (41)
- physical training (40)
- film (39)
- many worlds (39)
- quantum field theory (39)
- expert prediction (37)
- ufc (37)
- bjj (36)
- bubbles (36)
- mortgages (36)
- google (35)
- race relations (35)
- hedge funds (34)
- security (34)
- von Neumann (34)
- meritocracy (31)
- feynman (30)
- quants (30)
- taiwan (30)
- efficient markets (29)
- foo camp (29)
- movies (29)
- sports (29)
- music (28)
- singularity (27)
- entrepreneurs (26)
- conferences (25)
- housing (25)
- obama (25)
- subprime (25)
- venture capital (25)
- berkeley (24)
- epidemics (24)
- war (24)
- wall street (23)
- athletics (22)
- russia (22)
- ultimate fighting (22)
- cds (20)
- internet (20)
- new yorker (20)
- blogging (19)
- japan (19)
- scifoo (19)
- christmas (18)
- dna (18)
- gender (18)
- goldman sachs (18)
- university of oregon (18)
- cold war (17)
- cryptography (17)
- freeman dyson (17)
- smpy (17)
- treasury bailout (17)
- algorithms (16)
- autism (16)
- personality (16)
- privacy (16)
- Fermi problems (15)
- cosmology (15)
- happiness (15)
- height (15)
- india (15)
- oppenheimer (15)
- probability (15)
- social networks (15)
- wwii (15)
- fitness (14)
- government (14)
- les grandes ecoles (14)
- neanderthals (14)
- quantum computers (14)
- blade runner (13)
- chess (13)
- hedonic treadmill (13)
- nsa (13)
- philosophy of mind (13)
- research (13)
- aspergers (12)
- climate change (12)
- harvard society of fellows (12)
- malcolm gladwell (12)
- net worth (12)
- nobel prize (12)
- pseudoscience (12)
- Einstein (11)
- art (11)
- democracy (11)
- entropy (11)
- geeks (11)
- string theory (11)
- television (11)
- Go (10)
- ability (10)
- complexity (10)
- dating (10)
- energy (10)
- football (10)
- france (10)
- italy (10)
- mutants (10)
- nerds (10)
- olympics (10)
- pop culture (10)
- crossfit (9)
- encryption (9)
- eugene (9)
- flynn effect (9)
- james salter (9)
- simulation (9)
- tail risk (9)
- turing test (9)
- alan turing (8)
- alpha (8)
- ashkenazim (8)
- data mining (8)
- determinism (8)
- environmentalism (8)
- games (8)
- keynes (8)
- manhattan (8)
- new york times (8)
- pca (8)
- philip k. dick (8)
- qcd (8)
- real estate (8)
- robot genius (8)
- success (8)
- usain bolt (8)
- Iran (7)
- aig (7)
- basketball (7)
- free will (7)
- fx (7)
- game theory (7)
- hugh everett (7)
- inequality (7)
- information theory (7)
- iraq war (7)
- markets (7)
- paris (7)
- patents (7)
- poker (7)
- teaching (7)
- vietnam war (7)
- volatility (7)
- anthropic principle (6)
- bayes (6)
- class (6)
- drones (6)
- econtalk (6)
- empire (6)
- global warming (6)
- godel (6)
- intellectual property (6)
- nassim taleb (6)
- noam chomsky (6)
- prostitution (6)
- rationality (6)
- academia sinica (5)
- bobby fischer (5)
- demographics (5)
- fake alpha (5)
- kasparov (5)
- luck (5)
- nonlinearity (5)
- perimeter institute (5)
- renaissance technologies (5)
- sad but true (5)
- software development (5)
- solar energy (5)
- warren buffet (5)
- 100m (4)
- Poincare (4)
- assortative mating (4)
- bill gates (4)
- borges (4)
- cambridge uk (4)
- censorship (4)
- charles darwin (4)
- computers (4)
- creativity (4)
- hormones (4)
- humor (4)
- judo (4)
- kerviel (4)
- microsoft (4)
- mixed martial arts (4)
- monsters (4)
- moore's law (4)
- soros (4)
- supercomputers (4)
- trento (4)
- 200m (3)
- babies (3)
- brain drain (3)
- charlie munger (3)
- cheng ting hsu (3)
- chet baker (3)
- correlation (3)
- ecosystems (3)
- equity risk premium (3)
- facebook (3)
- fannie (3)
- feminism (3)
- fst (3)
- intellectual ventures (3)
- jim simons (3)
- language (3)
- lee kwan yew (3)
- lewontin fallacy (3)
- lhc (3)
- magic (3)
- michael lewis (3)
- mit (3)
- nathan myhrvold (3)
- neal stephenson (3)
- olympiads (3)
- path integrals (3)
- risk preference (3)
- search (3)
- sec (3)
- sivs (3)
- society generale (3)
- systemic risk (3)
- thailand (3)
- twitter (3)
- alibaba (2)
- bear stearns (2)
- bruce springsteen (2)
- charles babbage (2)
- cloning (2)
- david mamet (2)
- digital books (2)
- donald mackenzie (2)
- drugs (2)
- dune (2)
- exchange rates (2)
- frauds (2)
- freddie (2)
- gaussian copula (2)
- heinlein (2)
- industrial revolution (2)
- james watson (2)
- ltcm (2)
- mating (2)
- mba (2)
- mccain (2)
- monkeys (2)
- national character (2)
- nicholas metropolis (2)
- no holds barred (2)
- offices (2)
- oligarchs (2)
- palin (2)
- population structure (2)
- prisoner's dilemma (2)
- singapore (2)
- skidelsky (2)
- socgen (2)
- sprints (2)
- star wars (2)
- ussr (2)
- variance (2)
- virtual reality (2)
- war nerd (2)
- abx (1)
- anathem (1)
- andrew lo (1)
- antikythera mechanism (1)
- athens (1)
- atlas shrugged (1)
- ayn rand (1)
- bay area (1)
- beats (1)
- book search (1)
- bunnie huang (1)
- car dealers (1)
- carlos slim (1)
- catastrophe bonds (1)
- cdos (1)
- ces 2008 (1)
- chance (1)
- children (1)
- cochran-harpending (1)
- cpi (1)
- david x. li (1)
- dick cavett (1)
- dolomites (1)
- eharmony (1)
- eliot spitzer (1)
- escorts (1)
- faces (1)
- fads (1)
- favorite posts (1)
- fiber optic cable (1)
- francis crick (1)
- gary brecher (1)
- gizmos (1)
- greece (1)
- greenspan (1)
- hypocrisy (1)
- igon value (1)
- iit (1)
- inflation (1)
- information asymmetry (1)
- iphone (1)
- jack kerouac (1)
- jaynes (1)
- jazz (1)
- jfk (1)
- john dolan (1)
- john kerry (1)
- john paulson (1)
- john searle (1)
- john tierney (1)
- jonathan littell (1)
- las vegas (1)
- lawyers (1)
- lehman auction (1)
- les bienveillantes (1)
- lowell wood (1)
- lse (1)
- machine (1)
- mcgeorge bundy (1)
- mexico (1)
- michael jackson (1)
- mickey rourke (1)
- migration (1)
- money:tech (1)
- myron scholes (1)
- netwon institute (1)
- networks (1)
- newton institute (1)
- nfl (1)
- oliver stone (1)
- phil gramm (1)
- philanthropy (1)
- philip greenspun (1)
- portfolio theory (1)
- power laws (1)
- pyschology (1)
- randomness (1)
- recession (1)
- sales (1)
- skype (1)
- standard deviation (1)
- starship troopers (1)
- students today (1)
- teleportation (1)
- tierney lab blog (1)
- tomonaga (1)
- tyler cowen (1)
- venice (1)
- violence (1)
- virtual meetings (1)
- wealth effect (1)