Showing posts with label Einstein. Show all posts
Showing posts with label Einstein. Show all posts

Monday, June 24, 2019

Ulam on von Neumann, Godel, and Einstein


Ulam expresses so much in a few sentences! From his memoir, Adventures of a Mathematician. Above: Einstein and Godel. Bottom: von Neumann, Feynman, Ulam.
When it came to other scientists, the person for whom he [vN] had a deep admiration was Kurt Gödel. This was mingled with a feeling of disappointment at not having himself thought of "undecidability." For years Gödel was not a professor at Princeton, merely a visiting fellow, I think it was called. Apparently there was someone on the faculty who was against him and managed to prevent his promotion to a professorship. Johnny would say to me, "How can any of us be called professor when Gödel is not?" ...

As for Gödel, he valued Johnny very highly and was much interested in his views. I believe knowing the importance of his own discovery did not prevent Gödel from a gnawing uncertainty that maybe all he had discovered was another paradox à la Burali Forte or Russell. But it is much, much more. It is a revolutionary discovery which changed both the philosophical and the technical aspects of mathematics.

When we talked about Einstein, Johnny would express the usual admiration for his epochal discoveries which had come to him so effortlessly, for the improbable luck of his formulations, and for his four papers on relativity, on the Brownian motion, and on the photo-electric quantum effect. How implausible it is that the velocity of light should be the same emanating from a moving object, whether it is coming toward you or whether it is receding. But his admiration seemed mixed with some reservations, as if he thought, "Well, here he is, so very great," yet knowing his limitations. He was surprised at Einstein's attitude in his debates with Niels Bohr—at his qualms about quantum theory in general. My own feeling has always been that the last word has not been said and that a new "super quantum theory" might reconcile the different premises.

Sunday, May 21, 2017

Contingency, History, and the Atomic Bomb

[ More on Sachs -- profile in Look Magazine 1950. ]

How Alexander Sachs, acting on behalf of Szilard and Einstein, narrowly convinced FDR to initiate the atomic bomb project. History sometimes hangs on a fragile thread: had the project been delayed a year, atomic weapons might not have been used in WWII. Had the project completed a year earlier, the bombs might have been used against Germany.

See also A Brief History of the Future, as told to the Masters of the Universe.


Excerpts below are from Robert Jungk's Brighter than a Thousand Suns: A Personal History of the Atomic Scientists. (Note the book contains inaccuracies concerning the wartime role of German physicists such as Weizsacker and Heisenberg.)

Alexander Sachs:
... This international financier could always obtain entry to the White House, for he had often amazed Roosevelt by his usually astonishingly accurate forecasts of economic events. Ever since 1933 Sachs had been one of the unofficial but extremely influential advisers of the American President, all of whom had to possess, by F. D. R.'s own definition, 'great ability, physical vitality, and a real passion for anonymity'.


... It was nearly ten weeks before Alexander Sachs at last found an opportunity, on October 11, 1939, to hand President Roosevelt, in person, the letter composed by [Leo] Szilard and signed by [Albert] Einstein at the beginning of August [1939]. In order to ensure that the President should thoroughly appreciate the contents of the document and not lay it aside with a heap of other papers awaiting attention, Sachs read to him, in addition to the message and an appended memorandum by Szilard, a further much more comprehensive statement by himself. The effect of these communications was by no means so overpowering as Sachs had expected. Roosevelt, wearied by the prolonged effort of listening to his visitor, made an attempt to disengage himself from the whole affair. He told the disappointed reader that he found it all very interesting but considered government intervention to be premature at this stage.

Sachs, however, was able, as he took his leave, to extort from the President the consolation of an invitation to breakfast the following morning. "That night I didn't sleep a wink," Sachs remembers. "I was staying at the Carlton Hotel [two blocks north of the White House]. I paced restlessly to and fro in my room or tried to sleep sitting in a chair. There was a small park quite close to the hotel. Three or four times, I believe, between eleven in the evening and seven in the morning, I left the hotel, to the porter's amazement, and went across to the park. There I sat on a bench and meditated. What could I say to get the President on our side in this affair, which was already beginning to look practically hopeless? Quite suddenly, like an inspiration, the right idea came to me. I returned to the hotel, took a shower and shortly afterwards called once more at the White House."

Roosevelt was sitting alone at the breakfast table, in his wheel chair, when Sachs entered the room. The President inquired in an ironical tone:

"What bright idea have you got now? How much time would you like to explain it?"

Dr. Sachs says he replied that he would not take long.

"All I want to do is to tell you a story. During the Napoleonic wars a young American inventor came to the French Emperor and offered to build a fleet of steamships with the help of which Napoleon could, in spite of the uncertain weather, land in England. Ships without sails? This seemed to the great Corsican so impossible that he sent [Robert] Fulton away. In the opinion of the English historian Lord Acton, this is an example of how England was saved by the shortsightedness of an adversary. Had Napoleon shown more imagination and humility at that time, the history of the nineteenth century would have taken a very different course."

After Sachs finished speaking the President remained silent for several minutes. Then he wrote something on a scrap of paper and handed it to the servant who had been waiting at table. The latter soon returned with a parcel which, at Roosevelt's order, he began slowly to unwrap. It contained a bottle of old French brandy of Napoleon's time, which the Roosevelt family had possessed for many years. The President, still maintaining a significant silence, told the man to fill two glasses. Then he raised his own, nodded to Sachs and drank to him.

Next he remarked: "Alex, what you are after is to see that the Nazis don't blow us up?"

"Precisely."

It was only then that Roosevelt called in his attaché, [Brigadier] General [Edwin] "Pa" Watson, and addressed him—pointing to the documents Sachs had brought—in words which have since become famous:

"Pa, this requires action!"
More on the challenges:
Teller criticizes as follows one of these excessively rosy views of the early history of the American atom bomb: 'There is no mention of the futile efforts of the scientists in 1939 to awaken the interest of the military authorities in the atomic bomb. The reader does not learn about the dismay of scientists faced with the necessity of planned research. He does not find out about the indignation of engineers asked to believe in the theory and on such an airy basis to construct a plant.'

Wigner remembers the resistance. 'We often felt as though we were swimming in syrup,' he remarks. Boris Pregel, a radium expert, without whose disinterested loan of uranium the first experiments al Columbia University would have been impossible, comments: 'It is a wonder that after so many blunders and mistakes anything was ever accomplished at all.' Szilard still believes today that work on the uranium project was delayed for at least a year by the short-sightedness and sluggishness of the authorities. Even Roosevelt's manifest interest in the plan scarcely accelerated its execution. ...

Friday, October 28, 2016

Einstein and Oppenheimer on detachment


These are excerpts from Sam Schweber's Einstein and Oppenheimer: The Meaning of Genius.

Perhaps they can provide some solace as we near the end of this ridiculous election season.
Einstein: He never looked “upon ease and happiness as ends in themselves.” The trite objects of human efforts—possessions, outward success, luxury—always seemed to him “contemptible . . . [and] without the kinship of men of like mind, without the occupation with the objective world, the eternally unattainable in the field of art and scientific endeavor, life would have seemed empty” (Einstein 1954, 9). In his tribute to Max Planck on the occasion of Planck’s sixtieth birthday, Einstein stated that, like Arthur Schopenhauer, he believed that “one of the strongest motives that lead men to art and science is escape from everyday life with its painful crudity and hopeless dreariness, from the fetters of one’s own ever shifting desires. A finely tempered nature longs to escape from personal life into the world of objective perception and thought” (Einstein 1954, 225).
Oppenheimer: In a letter to his brother in March 1932 Oppenheimer declared that “through discipline, though not through discipline alone, we can achieve serenity, and a certain small but precious measure of freedom from the accidents of incarnation, and charity, and that detachment which preserves the world that it renounces. I believe that through discipline we learn to preserve what is essential to our happiness in more and more adverse circumstances, and to abandon with simplicity what would else have seemed to us indispensable; that we come a little to see the world without the gross distortion of personal desires, and seeing it so accept more easily our earthly privation and its earthly horror. . . . [I]n its nature discipline involves the subjection of the soul to some perhaps minor end; and that end must be real, if the discipline is not to be factitious. Therefore I think that all things which evoke discipline: study, and our duties to men and to the commonwealth, war, and personal hardship, and even the need for subsistence, ought to be greeted by us with profound gratitude; for only through them can we attain to the least detachment and only so can we know peace. (Smith and Weiner 1980, 155–156)”
My favorite quote from Marcus Aurelius:
Marcus Aurelius

"Or does the bubble reputation distract you? Keep before your eyes the swift onset of oblivion, and the abysses of eternity before us and behind; mark how hollow are the echoes of applause, how fickle and undiscerning the judgments of professed admirers, and how puny the arena of human fame. For the entire earth is but a point, and the place of our own habitation but a minute corner in it; and how many are therein who will praise you, and what sort of men are they?"

Thursday, February 11, 2016

LIGO detects gravity waves

Live-blogging the LIGO announcement of detection of gravity waves. Detection of an event in 2015 (initial science run of advanced LIGO) is good news for the future use of gravity waves as an astrophysical probe -- it suggests a fairly high density of NS-NS, NS-BH, and BH-BH binaries in the universe. Each time astronomers have developed a new probe (radio waves, x-rays, etc.) they have discovered new cosmic phenomena. The future is promising!

Techno-pessimists should note that detecting gravity waves is much, much harder than landing on the moon. LIGO measured a displacement 1/1000 of a neutron radius, in a noisy terrestrial background, accounting even for quantum noise.
https://www.ligo.caltech.edu/: 9/14/15 detection of BH-BH (~ 30 solar masses) merger at distance 1.3 Gy. The energy in the gravitational wave signal was ~3 solar masses!

Here is the paper  http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102
When I was an undergraduate, I toured the early LIGO prototype, which was using little car shaped rubber erasers as shock absorbers. Technology has improved since then, and the real device is much bigger.



Kip Thorne (from whom I learned General Relativity) has been one of the driving forces behind the effort to detect gravity waves for over 40 years. The picture below was taken during a conference in Eugene back in 2005.


Sunday, October 07, 2012

Adventures of a Mathematician

I found my copy of Ulam's book Adventures of a Mathematician recently while preparing to move (it was in a box with other books and notes from Caltech). I had not looked at it since I was an undergraduate! Below are some interesting excerpts to go with the ones I posted here.
[p.60] ... the vacancy in the Society of Fellows at Harvard which I was invited to fill resulted from Chandrasekhar's acceptance of an assistant professorship at Chicago. 
[p.81] When we talked about Einstein, Johnny [von Neumann] would express the usual admiration for his epochal discoveries which had come to him so effortlessly ... But his admiration seemed mixed with some reservations, as if he thought, "Well, here he is, so very great," yet knowing his limitations. [ See also Feyerabend on the giants. ] ... I once asked Johnny whether he thought that Einstein might have developed a sort of contempt for other physicists, including even the best and most famous ones -- that he had been deified and lionized too much... Johnny agreed... "he does not think too much of others as possible rivals in the history of physics of our epoch."
[p.107] I told Banach about an expression Johnny had used with me in Princeton before stating some non-Jewish mathematician's result, "Die Goim haben den folgenden satz beweisen" (The goys have proved the following theorem). Banach, who was pure goy, thought it was one of the funniest sayings he had ever heard. He was enchanted by its implication that if the goys could do it, then Johnny and I ought to be able to do it better. Johnny did not invent this joke, but he liked it and we started using it.
There are many more interesting things, including the story behind the Ulam-Teller design for the hydrogen bomb.

Sunday, October 30, 2011

Steve Jobs, intuition, and genius

Walter Isaacson, biographer of both Einstein and Steve Jobs, on smarts, intuition and innovation.

NYTimes: ONE of the questions I wrestled with when writing about Steve Jobs was how smart he was. On the surface, this should not have been much of an issue. You’d assume the obvious answer was: he was really, really smart. Maybe even worth three or four reallys. After all, he was the most innovative and successful business leader of our era and embodied the Silicon Valley dream writ large: he created a start-up in his parents’ garage and built it into the world’s most valuable company.

But I remember having dinner with him a few months ago around his kitchen table, as he did almost every evening with his wife and kids. Someone brought up one of those brainteasers involving a monkey’s having to carry a load of bananas across a desert, with a set of restrictions about how far and how many he could carry at one time, and you were supposed to figure out how long it would take. Mr. Jobs tossed out a few intuitive guesses but showed no interest in grappling with the problem rigorously. I thought about how Bill Gates would have gone click-click-click and logically nailed the answer in 15 seconds, and also how Mr. Gates devoured science books as a vacation pleasure. But then something else occurred to me: Mr. Gates never made the iPod. Instead, he made the Zune.

So was Mr. Jobs smart? Not conventionally. Instead, he was a genius. That may seem like a silly word game, but in fact his success dramatizes an interesting distinction between intelligence and genius. His imaginative leaps were instinctive, unexpected, and at times magical. They were sparked by intuition, not analytic rigor. Trained in Zen Buddhism, Mr. Jobs came to value experiential wisdom over empirical analysis. He didn’t study data or crunch numbers but like a pathfinder, he could sniff the winds and sense what lay ahead.

He told me he began to appreciate the power of intuition, in contrast to what he called “Western rational thought,” when he wandered around India after dropping out of college. “The people in the Indian countryside don’t use their intellect like we do,” he said. “They use their intuition instead ... Intuition is a very powerful thing, more powerful than intellect, in my opinion. That’s had a big impact on my work.”

Mr. Jobs’s intuition was based not on conventional learning but on experiential wisdom. He also had a lot of imagination and knew how to apply it. As Einstein said, “Imagination is more important than knowledge.”

Einstein is, of course, the true exemplar of genius. He had contemporaries who could probably match him in pure intellectual firepower when it came to mathematical and analytic processing. Henri Poincaré, for example, first came up with some of the components of special relativity, and David Hilbert was able to grind out equations for general relativity around the same time Einstein did. But neither had the imaginative genius to make the full creative leap at the core of their theories, namely that there is no such thing as absolute time and that gravity is a warping of the fabric of space-time. (O.K., it’s not that simple, but that’s why he was Einstein and we’re not.)

... Both Einstein and Mr. Jobs were very visual thinkers. The road to relativity began when the teenage Einstein kept trying to picture what it would be like to ride alongside a light beam. Mr. Jobs spent time almost every afternoon walking around the studio of his brilliant design chief Jony Ive and fingering foam models of the products they were developing.

Mr. Jobs’s genius wasn’t, as even his fanboys admit, in the same quantum orbit as Einstein’s. So it’s probably best to ratchet the rhetoric down a notch and call it ingenuity. Bill Gates is super-smart, but Steve Jobs was super-ingenious. The primary distinction, I think, is the ability to apply creativity and aesthetic sensibilities to a challenge.

In the world of invention and innovation, that means combining an appreciation of the humanities with an understanding of science — connecting artistry to technology, poetry to processors. This was Mr. Jobs’s specialty. “I always thought of myself as a humanities person as a kid, but I liked electronics,” he said. “Then I read something that one of my heroes, Edwin Land of Polaroid, said about the importance of people who could stand at the intersection of humanities and sciences, and I decided that’s what I wanted to do.”

The ability to merge creativity with technology depends on one’s ability to be emotionally attuned to others. Mr. Jobs could be petulant and unkind in dealing with other people, which caused some to think he lacked basic emotional awareness. In fact, it was the opposite. He could size people up, understand their inner thoughts, cajole them, intimidate them, target their deepest vulnerabilities, and delight them at will. He knew, intuitively, how to create products that pleased, interfaces that were friendly, and marketing messages that were enticing.

... China and India are likely to produce many rigorous analytical thinkers and knowledgeable technologists. But smart and educated people don’t always spawn innovation. America’s advantage, if it continues to have one, will be that it can produce people who are also more creative and imaginative, those who know how to stand at the intersection of the humanities and the sciences. That is the formula for true innovation, as Steve Jobs’s career showed.

Sunday, July 19, 2009

More from Pais: Einstein and bordellos?

More excerpts from the memoir (A Tale of Two Continents: A Physicist’s Life in a Turbulent World) of Abraham Pais. See earlier post.

p. 375: ... In early September we went back to Berkeley ... The physicist Otto Stern, a Nobel laureate, lived in retirement in the area. He had known Einstein well when both were in Prague, where - he told me - they would visit bordellos together, "quiet places for discussing physics." ... :-) [See also here.]

One November morning I stood in the shower when the doorbell rang... It was Don Glaser, beside himself with excitement. "I just received ... the Nobel Prize! Now I'm a free man, I can leave physics." He did not care at all for the recent style of doing experiments in large teams [modern experimental particle physics]. Indeed, soon after he returned from Stockholm he became a molecular biologist.

I met with Glaser (inventor of the bubble chamber) once when I was a grad student, about the possibility of working on computational neuroscience and vision (his focus at the time). Had I gone that route I probably would have bumped into Jeff Hawkins, who was there doing biophysics.

Sunday, January 11, 2009

Confirmation bias and the Einstein myth

The story that Einstein was a poor student is appealing, but entirely untrue. It's yet another example of confirmation bias -- the tendency to embrace information that confirms our preconceptions (in this case, confirms some romantic notion about how human achievement works), and to reject information that contradicts them. The truth is that Einstein was (unsurprisingly) a brilliant student.

See pages 37-39 of the magisterial biography Subtle is the Lord (Google books) by eminent physicist (and IAS colleague of Einstein) Abraham Pais.

At age 4-5 Einstein became fascinated by the workings of a compass. As an adult he still remembered the moment as the first miracle in his intellectual development. The second miracle was his discovery of the beauty of Euclidean geometry at age 12: "the clarity and certainty of its contents made an indescribable impression on me" -- the reaction of an average 12 year old? Einstein taught himself calculus between the ages of 12 and 16. He regularly ranked first in his classes in elementary, middle and high school. From age 10 to 15 he had weekly discussions about science and philosophy with a university student and family friend named Max Talmud. Does this sound like a slow learner?

Pais even writes (p. 38): "The preceeding collection of stories about Einstein the young boy demonstrates the remarkable extent to which his most characteristic personal traits were native rather than acquired."

Friday, June 01, 2007

Oppenheimer on Einstein

A great find -- via Brad DeLong -- from 1966. Trying to teach non-science majors about relativity this quarter has only enhanced my regard for Einstein's genius.

More on Oppenheimer and Einstein from this blog.

Note Added: another great Internet find -- a chess game (Princeton, 1933) in which Einstein defeats Oppenheimer (the latter, playing black, appears to lose his queen on a blunder :-)

New York Review of Books:

... Einstein was a physicist, a natural philosopher, the greatest of our time.

What we have heard, what you all know, what is the true part of the myth is his extraordinary originality. The discovery of quanta would surely have come one way or another, but he discovered them. Deep understanding of what it means that no signal could travel faster than light would surely have come; the formal equations were already known; but this simple, brilliant understanding of the physics could well have been slow in coming, and blurred, had he not done it for us. The general theory of relativity which, even today, is not well proved experimentally, no one but he would have done for a long, long time. It is in fact only in the last decade, the last years, that one has seen how a pedestrian and hard-working physicist, or many of them, might reach that theory and understand this singular union of geometry and gravitation; and we can do even that today only because some of the a priori open possibilities are limited by the confirmation of Einstein's discovery that light would be deflected by gravity.


Yet there is another side besides the originality. Einstein brought to the work of originality deep elements of tradition. It is only possible to discover in part how he came by it, by following his reading, his friendships, the meager record that we have. But of these deep-seated elements of tradition—I will not try to enumerate them all; I do not know them all—at least three were indispensable and stayed with him.

THE FIRST IS from the rather beautiful but recondite part of physics that is the explanation of the laws of thermodynamics in terms of the mechanics of large numbers of particles, statistical mechanics. This was with Einstein all the time. It was what enabled him from Planck's discovery of the law of black body radiation to conclude that light was not only waves but particles, particles with an energy proportional to their frequency and momentum determined by their wave-number, the famous relations that de Broglie was to extend to all matter, to electrons first and then clearly to all matter.

It was this statistical tradition that led Einstein to the laws governing the emission and absorption of light by atomic systems. It was this that enabled him to see the connection between de Broglie's waves and the statistics of light-quanta proposed by Bose. It was this that kept him an active proponent and discoverer of the new phenomena of quantum physics up to 1925.

The second and equally deep strand—and here I think we do know where it came from—was his total love of the idea of a field: the following of physical phenomena in minute and infinitely subdividable detail in space and in time. This gave him his first great drama of trying to see how Maxwell's equations could be true. They were the first field equations of physics; they are still true today with only very minor and well-understood modifications. It is this tradition which made him know that there had to be a field theory of gravitation, long before the clues to that theory were securely in his hand.

The third tradition was less one of physics than of philosophy. It is a form of the principle of sufficient reason. It was Einstein who asked what do we mean, what can we measure, what elements in physics are conventional? He insisted that those elements that were conventional could have no part in the real predictions of physics. This also had roots: for one the mathematical invention of Riemann, who saw how very limited the geometry of the Greeks had been, how unreasonably limited. But in a more important sense, it followed from the long tradition of European philosophy, you may say starting with Descartes—if you wish you can start it in the Thirteenth Century, because in fact it did start then—and leading through the British empiricists, and very clearly formulated, though probably without influence in Europe, by Charles Pierce: One had to ask how do we do it, what do we mean, is this just something that we can use to help ourselves in calculating, or is it something that we can actually study in nature by physical means? For the point here is that the laws of nature not only describe the results of observations, but the laws of nature delimit the scope of observations. That was the point of Einstein's understanding of the limiting character of the velocity of light; it also was the nature of the resolution in quantum theory, where the quantum of action, Planck's constant, was recognized as limiting the fineness of the transaction between the system studied and the machinery used to study it, limiting this fineness in a form of atomicity quite different from and quite more radical than any that the Greeks had imagined or than was familiar from the atomic theory of chemistry. ...

Saturday, May 19, 2007

Galison: Poincare and Einstein

A colleague and I recently discussed Peter Galison and his book Einstein's Clocks, Poincare's Maps: Empires of Time . (See also here and here.) The book explores how practical concerns of the era (in particular, clock synchronization -- important for longitudinal navigation as well as for the European train system) influenced the discovery of special relativity.

Both my friend and I are great admirers of Galison. After earning his doctorate in the history of science, he wrote a second dissertation in particle theory under Howard Georgi while a Junior Fellow at Harvard. Other than particle theorists turned science historians like Sam Schweber or Abraham Pais (see here and here), I can't think of anyone more qualified to work on the (underdeveloped) history of modern physics.

When I learned about special relativity as a kid, I first went through a phase of suspicion about Einstein's operational approach -- how could one be sure, I wondered, that light beams were the best primitive for the operation and synchronization of clocks? After I accepted this idea, I was shocked that someone could be so imaginative as to come up with his clever gedanken experiments, involving moving trains, light beams, lattices of clocks. I thought to myself -- I could have never invented that! It was only much later that I learned about his patent office work on clocks and how synchronization of time between distant rail stations was an important practical problem of the day. I agree completely with Galison that practical concerns had a strong influence on both Einstein's and Poincare's thinking.

NYTimes: ...Einstein's relativity has long been regarded by scholars as a monument to the power of abstract thought. But if Dr. Peter Galison, 48 -- a Harvard professor of the history of science and of physics, a pilot, art lover and nascent filmmaker -- is right, physics and Einstein have flourished more in their connections to the world than in any ivory tower aloofness. And one clue to the origin of relativity can be found in something as mundane and practical as a 19th-century train schedule. ''It's in as plain sight as it could possibly be,'' he said.

As Dr. Galison relates, before the advent of factories began to standardize life, and railroad systems with crisscrossing tracks made it imperative to know which train was where and when, there were too many times, one for every village.

In the last part of the 19th century, the coordination of clocks and the standardization of time had engaged the passions of nations, business leaders, astronomers and philosophers. The patent office in Bern, Switzerland, where Einstein worked, was a clearinghouse for patents on the synchronization of clocks.

In New England, the Harvard and Yale observatories were competing to sell time signals to the public, and in Paris pneumatic tubes snaked under the streets to synchronize the city's clocks with blasts of air. Far from being a bit of abstraction by a loner genius, the clocks that Einstein used as examples in his papers were as familiar then as computers are today.

...In addition to all his high-flown academic activities, Poincaré was immersed in practical work. He was a mining inspector, for example. Most important, he was deeply involved with the French Board of Longitude, even serving as president, sending teams of soldiers and surveyors across the oceans to map the far-flung empire.

Coordinated clocks were central to this enterprise. To measure the longitude of some mountain or port or gold mine in the New World, it was necessary to measure the difference between the time some star crossed the meridian there and the time it did back in Paris. The leaders and rivals in filling in this ''electric world map,'' as Dr. Galison calls it, were England and France, even though for several years they were embarrassingly unable to agree on the distance between their own principal observatories, Greenwich and Paris. Paris lost out to Greenwich as the locus of zero longitude, but in 1909 Poincaré used the Eiffel Tower to broadcast time signals to the world.

...In his papers Einstein was always using modern machines to illustrate his ideas, Dr. Galison noted. ''There is something wonderful about Einstein invoking trains and telegraphs to get a transformation of space-time, Poincaré turning the Eiffel Tower into a radio,'' Dr. Galison said.

''In the long run I think what's happened to them is that we, partly through our own doing and partly through our doing to them, removed these physicists from the concrete situations that they were involved in. And I think in a way lose some of the fascination that these ideas had for them and still could have for us in a way.''

It's our loss, he said.


Galison: "My question is not how different scientific communities pass like ships in the night,'' he wrote in Image and Logic. ''It is rather how, given the extraordinary diversity of the participants in physics -- cryogenic engineers, radio chemists, algebraic topologists, prototype tinkerers, computer wizards, quantum field theorists -- they speak to each other at all."

Tuesday, July 05, 2005

Einstein quotes

"[W]e do science when we reconstruct in the language of logic what we have seen and experienced. We do art when we communicate through forms whose connections are not accessible to the conscious mind yet we intuitively recognise them as something meaningful." 

 "After a certain level of technological skill is achieved, science and art tend to coalesce in aesthetic plasticity and form. The greater scientists are artists as well." 

From Alice Calaprice, The New Quotable Einstein, Princeton.

Blog Archive

Labels